Weakly Supervised Few-Shot Segmentation via Meta-Learning

被引:11
作者
Gama, Pedro H. T. [1 ]
Oliveira, Hugo [2 ]
Marcato Jr, Jose [3 ]
dos Santos, Jefersson A. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, BR-31270901 Belo Horizonte, Brazil
[2] Univ Sao, Inst Math & Stat IME, BR-05508060 Sao Paulo, Brazil
[3] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, BR-79070900 Campo Grande, MS, Brazil
基金
巴西圣保罗研究基金会;
关键词
Image segmentation; Task analysis; Semantics; Annotations; Prototypes; Biomedical imaging; Training; Agriculture; few-shot; medical imaging analysis; meta learning; remote sensing; semantic segmentation; weakly supervised; IMAGES;
D O I
10.1109/TMM.2022.3162951
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation is a classic computer vision task with multiple applications, which includes medical and remote sensing image analysis. Despite recent advances with deep-based approaches, labeling samples (pixels) for training models is laborious and, in some cases, unfeasible. In this paper, we present two novel meta-learning methods, named WeaSeL and ProtoSeg, for the few-shot semantic segmentation task with sparse annotations. We conducted an extensive evaluation of the proposed methods in different applications (12 datasets) in medical imaging and agricultural remote sensing, which are very distinct fields of knowledge and usually subject to data scarcity. The results demonstrated the potential of our method, achieving suitable results for segmenting both coffee/orange crops and anatomical parts of the human body in comparison with full dense annotation.
引用
收藏
页码:1784 / 1797
页数:14
相关论文
共 50 条
  • [1] An overview on Meta-learning approaches for Few-shot Weakly-supervised Segmentation
    Gama, Pedro Henrique Targino
    Oliveira, Hugo
    dos Santos, Jefersson A.
    Cesar Jr, Roberto M.
    COMPUTERS & GRAPHICS-UK, 2023, 113 : 77 - 88
  • [2] Self-Supervised Learning for Few-Shot Medical Image Segmentation
    Ouyang, Cheng
    Biffi, Carlo
    Chen, Chen
    Kart, Turkay
    Qiu, Huaqi
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (07) : 1837 - 1848
  • [3] Revisiting Unsupervised Meta-Learning via the Characteristics of Few-Shot Tasks
    Ye, Han-Jia
    Han, Lu
    Zhan, De-Chuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3721 - 3737
  • [4] Weakly Supervised Few-Shot Semantic Segmentation via Pseudo Mask Enhancement and Meta Learning
    Zhang, Man
    Zhou, Yong
    Liu, Bing
    Zhao, Jiaqi
    Yao, Rui
    Shao, Zhiwen
    Zhu, Hancheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7980 - 7991
  • [5] MedOptNet: Meta-Learning Framework for Few-Shot Medical Image Classification
    Lu, Liangfu
    Cui, Xudong
    Tan, Zhiyuan
    Wu, Yulei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 725 - 736
  • [6] A meta-learning based method for segmentation of few-shot magnetic resonance images
    Chen X.
    Fu Z.
    Yao Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (02): : 193 - 201
  • [7] Ensemble Meta-Learning for Few-Shot Soot Density Recognition
    Gu, Ke
    Zhang, Yonghui
    Qiao, Junfei
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 2261 - 2270
  • [8] Few-shot driver identification via meta-learning
    Lu, Lin
    Xiong, Shengwu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 203
  • [9] SML: Semantic meta-learning for few-shot semantic segmentation * *
    Pambala, Ayyappa Kumar
    Dutta, Titir
    Biswas, Soma
    PATTERN RECOGNITION LETTERS, 2021, 147 : 93 - 99
  • [10] Layer-Wise Mutual Information Meta-Learning Network for Few-Shot Segmentation
    Luo, Xiaoliu
    Duan, Zhao
    Qin, Anyong
    Tian, Zhuotao
    Xie, Ting
    Zhang, Taiping
    Tang, Yuan Yan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (05) : 9684 - 9698