Graphene-based field-effect transistors for biosensing: where is the field heading to?

被引:17
|
作者
Szunerits, Sabine [1 ,2 ]
Rodrigues, Teresa [1 ,2 ]
Bagale, Rupali [1 ]
Happy, Henri [1 ]
Boukherroub, Rabah [1 ]
Knoll, Wolfgang [2 ]
机构
[1] Univ Lille, Univ Polytech Hauts de France, CNRS, Cent Lille,IEMN,UMR 8520, F-59000 Lille, France
[2] Danube Private Univ, Fac Med & Dent, Lab Life Sci & Technol LiST, A-3500 Krems, Austria
关键词
Graphene; Field-effect transistor; Bioreceptors; Sensing; DNA;
D O I
10.1007/s00216-023-04760-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Two-dimensional (2D) materials hold great promise for future applications, notably their use as biosensing channels in the field-effect transistor (FET) configuration. On the road to implementing one of the most widely used 2D materials, graphene, in FETs for biosensing, key issues such as operation conditions, sensitivity, selectivity, reportability, and economic viability have to be considered and addressed correctly. As the detection of bioreceptor-analyte binding events using a graphene-based FET (gFET) biosensor transducer is due to either graphene doping and/or electrostatic gating effects with resulting modulation of the electrical transistor characteristics, the gFET configuration as well as the surface ligands to be used have an important influence on the sensor performance. While the use of back-gating still grabs attention among the sensor community, top-gated and liquid-gated versions have started to dominate this area. The latest efforts on gFET designs for the sensing of nucleic acids, proteins and virus particles in different biofluids are presented herewith, highlighting the strategies presently engaged around gFET design and choosing the right bioreceptor for relevant biomarkers.
引用
收藏
页码:2137 / 2150
页数:14
相关论文
共 50 条
  • [41] Covalent functionalisation controlled by molecular design for the aptameric recognition of serotonin in graphene-based field-effect transistors
    Wetzl, Cecilia
    Brosel-Oliu, Sergi
    Carini, Marco
    Di Silvio, Desire
    Illa, Xavi
    Villa, Rosa
    Guimera, Anton
    Prats-Alfonso, Elisabet
    Prato, Maurizio
    Criado, Alejandro
    NANOSCALE, 2023, 15 (41) : 16650 - 16657
  • [42] Supramolecular Chemistry on Graphene Field-Effect Transistors
    Zhang, Xiaoyan
    Huisman, Everardus H.
    Gurram, Mallikarjuna
    Browne, Wesley R.
    van Wees, Bart J.
    Feringa, Ben L.
    SMALL, 2014, 10 (09) : 1735 - 1740
  • [43] Delay Analysis of Graphene Field-Effect Transistors
    Wang, Han
    Hsu, Allen
    Lee, Dong Seup
    Kim, Ki Kang
    Kong, Jing
    Palacios, Tomas
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (03) : 324 - 326
  • [44] Simulation of graphene nanoribbon field-effect transistors
    Fiori, Gianluca
    Iannaccone, Giuseppe
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) : 760 - 762
  • [45] Graphene Field-Effect Transistors with Ferroelectric Gating
    Zheng, Yi
    Ni, Guang-Xin
    Toh, Chee-Tat
    Tan, Chin-Yaw
    Yao, Kui
    Oezyilmaz, Barbaros
    PHYSICAL REVIEW LETTERS, 2010, 105 (16)
  • [46] Hysteresis reversion in graphene field-effect transistors
    Liao, Zhi-Min
    Han, Bing-Hong
    Zhou, Yang-Bo
    Yu, Da-Peng
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (04):
  • [47] Modeling Techniques for Graphene Field-effect Transistors
    Lu, Haiyan
    Wu, Yun
    Huo, Shuai
    Xu, Yuehang
    Kong, Yuechan
    Chen, Tangshen
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION PROBLEM-SOLVING (ICCP), 2015, : 373 - 376
  • [48] The effect of traps on the performance of graphene field-effect transistors
    Zhu, J.
    Jhaveri, R.
    Woo, J. C. S.
    APPLIED PHYSICS LETTERS, 2010, 96 (19)
  • [49] A first principles theoretical examination of graphene-based field effect transistors
    Champlain, James G.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
  • [50] Dielectric-Modulated Biosensing with Ultrahigh-Frequency-Operated Graphene Field-Effect Transistors
    Zhang, Xiaoyan
    Liu, Tingxian
    Boyle, Aimee
    Bahreman, Azadeh
    Bao, Lei
    Jing, Qiushi
    Xue, Honglei
    Kieltyka, Roxanne
    Kros, Alexander
    Schneider, Gregory F.
    Fu, Wangyang
    ADVANCED MATERIALS, 2022, 34 (07)