Graphene-based field-effect transistors for biosensing: where is the field heading to?

被引:17
|
作者
Szunerits, Sabine [1 ,2 ]
Rodrigues, Teresa [1 ,2 ]
Bagale, Rupali [1 ]
Happy, Henri [1 ]
Boukherroub, Rabah [1 ]
Knoll, Wolfgang [2 ]
机构
[1] Univ Lille, Univ Polytech Hauts de France, CNRS, Cent Lille,IEMN,UMR 8520, F-59000 Lille, France
[2] Danube Private Univ, Fac Med & Dent, Lab Life Sci & Technol LiST, A-3500 Krems, Austria
关键词
Graphene; Field-effect transistor; Bioreceptors; Sensing; DNA;
D O I
10.1007/s00216-023-04760-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Two-dimensional (2D) materials hold great promise for future applications, notably their use as biosensing channels in the field-effect transistor (FET) configuration. On the road to implementing one of the most widely used 2D materials, graphene, in FETs for biosensing, key issues such as operation conditions, sensitivity, selectivity, reportability, and economic viability have to be considered and addressed correctly. As the detection of bioreceptor-analyte binding events using a graphene-based FET (gFET) biosensor transducer is due to either graphene doping and/or electrostatic gating effects with resulting modulation of the electrical transistor characteristics, the gFET configuration as well as the surface ligands to be used have an important influence on the sensor performance. While the use of back-gating still grabs attention among the sensor community, top-gated and liquid-gated versions have started to dominate this area. The latest efforts on gFET designs for the sensing of nucleic acids, proteins and virus particles in different biofluids are presented herewith, highlighting the strategies presently engaged around gFET design and choosing the right bioreceptor for relevant biomarkers.
引用
收藏
页码:2137 / 2150
页数:14
相关论文
共 50 条
  • [31] Reconfigurable frequency multipliers based on graphene field-effect transistors
    Toral-Lopez, A.
    Marin, E. G.
    Pasadas, F.
    Ganeriwala, M. D.
    Ruiz, F. G.
    Jimenez, D.
    Godoy, A.
    DISCOVER NANO, 2023, 18 (01)
  • [32] Reconfigurable frequency multipliers based on graphene field-effect transistors
    A. Toral-Lopez
    E. G. Marin
    F. Pasadas
    M. D. Ganeriwala
    F. G. Ruiz
    D. Jiménez
    A. Godoy
    Discover Nano, 18
  • [33] Graphene oxide gate dielectric for graphene-based monolithic field effect transistors
    Eda, Goki
    Nathan, Arokia
    Woebkenberg, Paul
    Colleaux, Florian
    Ghaffarzadeh, Khashayar
    Anthopoulos, Thomas D.
    Chhowalla, Manish
    APPLIED PHYSICS LETTERS, 2013, 102 (13)
  • [34] Restorative Effect on Electrical Characteristics of Graphene Based Field-Effect Transistors
    Ha, Tae-Jun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (12) : 9137 - 9141
  • [35] Energy Dissipation in Graphene Field-Effect Transistors
    Freitag, Marcus
    Steiner, Mathias
    Martin, Yves
    Perebeinos, Vasili
    Chen, Zhihong
    Tsang, James C.
    Avouris, Phaedon
    NANO LETTERS, 2009, 9 (05) : 1883 - 1888
  • [36] Sensing at the Surface of Graphene Field-Effect Transistors
    Fu, Wangyang
    Jiang, Lin
    van Geest, Erik P.
    Lima, Lia M. C.
    Schneider, Gregory F.
    ADVANCED MATERIALS, 2017, 29 (06)
  • [37] Tunnel field-effect transistors with graphene channels
    D. A. Svintsov
    V. V. Vyurkov
    V. F. Lukichev
    A. A. Orlikovsky
    A. Burenkov
    R. Oechsner
    Semiconductors, 2013, 47 : 279 - 284
  • [38] Graphene-Based Organic Field-Effect Transistors Fabricated by Using a Thermally-Treated Exfoliation Technique
    Ryu, Kyungsun
    Kim, Sung-Jin
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (04) : 2015 - 2018
  • [39] Tunnel field-effect transistors with graphene channels
    Svintsov, D. A.
    Vyurkov, V. V.
    Lukichev, V. F.
    Orlikovsky, A. A.
    Burenkov, A.
    Oechsner, R.
    SEMICONDUCTORS, 2013, 47 (02) : 279 - 284
  • [40] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)