An efficient evolutionary algorithm based on deep reinforcement learning for large-scale sparse multiobjective optimization

被引:7
作者
Gao, Mengqi [1 ,2 ]
Feng, Xiang [1 ,2 ]
Yu, Huiqun [1 ,2 ]
Li, Xiuquan [3 ]
机构
[1] East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
[2] Shanghai Engn Res Ctr Smart Energy, Shanghai, Peoples R China
[3] Chinese Acad Sci & Technol Dev, Beijing 100038, Peoples R China
基金
中国国家自然科学基金;
关键词
Large-scale; Sparse multiobjective optimization; Evolutionary computation; Deep reinforcement learning; DECISION; NETWORKS; GAME; GO;
D O I
10.1007/s10489-023-04574-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large-scale sparse multiobjective optimization problems (SMOPs) widely exist in academic research and engineering applications. The curse of dimensionality and the fact that most decision variables take zero values make optimization very difficult. Sparse features are common to many practical complex problems currently, and using sparse features as a breakthrough point can enable many large-scale complex problems to be solved. We propose an efficient evolutionary algorithm based on deep reinforcement learning to solve large-scale SMOPs. Deep reinforcement learning networks are used for mining sparse variables to reduce the problem dimensionality, which is a challenge for large-scale multiobjective optimization. Then the three-way decision concept is used to optimize decision variables. The emphasis is on optimizing deterministic nonzero variables and continuously mining uncertain decision variables. Experimental results on sparse benchmark problems and real-world application problems show that the proposed algorithm performs well on SMOPs while being highly efficient.
引用
收藏
页码:21116 / 21139
页数:24
相关论文
共 50 条
  • [31] Efficient and scalable reinforcement learning for large-scale network control
    Ma, Chengdong
    Li, Aming
    Du, Yali
    Dong, Hao
    Yang, Yaodong
    NATURE MACHINE INTELLIGENCE, 2024, 6 (09) : 1006 - 1020
  • [32] A multi-stage knowledge-guided evolutionary algorithm for large-scale sparse multi-objective optimization problems *
    Ding, Zhuanlian
    Chen, Lei
    Sun, Dengdi
    Zhang, Xingyi
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 73
  • [33] Large-scale power inspection: A deep reinforcement learning approach
    Guan, Qingshu
    Zhang, Xiangquan
    Xie, Minghui
    Nie, Jianglong
    Cao, Hui
    Chen, Zhao
    He, Zhouqiang
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [34] A Network Reduction-Based Multiobjective Evolutionary Algorithm for Community Detection in Large-Scale Complex Networks
    Zhang, Xingyi
    Zhou, Kefei
    Pan, Hebin
    Zhang, Lei
    Zeng, Xiangxiang
    Jin, Yaochu
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (02) : 703 - 716
  • [35] Constrained large-scale real-time EV scheduling based on recurrent deep reinforcement learning
    Li, Hang
    Li, Guojie
    Lie, Tek Tjing
    Li, Xingzhi
    Wang, Keyou
    Han, Bei
    Xu, Jin
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 144
  • [36] Learning-Driven Algorithm With Dual Evolution Patterns for Solving Large-Scale Multiobjective Optimization Problems
    Song, Mingshuo
    Song, Wei
    Wee Lai, Khin
    IEEE ACCESS, 2025, 13 : 30976 - 30992
  • [37] Evolutionary Multiobjective Optimization for Large-Scale Portfolio Selection With Both Random and Uncertain Returns
    Liu, Weilong
    Zhang, Yong
    Liu, Kailong
    Quinn, Barry
    Yang, Xingyu
    Peng, Qiao
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2025, 29 (01) : 76 - 90
  • [38] Deep reinforcement learning for scheduling in large-scale networked control systems
    Redder, Adrian
    Ramaswamy, Arunselvan
    Quevedo, Daniel E.
    IFAC PAPERSONLINE, 2019, 52 (20): : 333 - 338
  • [39] Large-Scale Retrieval for Reinforcement Learning
    Humphreys, Peter C.
    Guez, Arthur
    Tieleman, Olivier
    Sifre, Laurent
    Weber, Theophane
    Lillicrap, Timothy
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [40] Energy-aware task scheduling optimization with deep reinforcement learning for large-scale heterogeneous systems
    Li, Jingbo
    Zhang, Xingjun
    Wei, Zheng
    Wei, Jia
    Ji, Zeyu
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2021, 3 (04) : 383 - 392