3D urban object change detection from aerial and terrestrial point clouds: A review

被引:17
|
作者
Xiao, Wen [1 ,2 ]
Cao, Hui [1 ]
Tang, Miao [1 ]
Zhang, Zhenchao [3 ]
Chen, Nengcheng [2 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Wuhan 430074, Peoples R China
[3] Informat Engn Univ, Inst Geospatial Informat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud; Lidar; SfM photogrammetry; Building change; Street scene; Urban tree; Construction site; BUILDING CHANGE DETECTION; LIDAR DATA; DEFORMATION ANALYSIS; FOREST STRUCTURE; STEREO IMAGERY; AIRBORNE; NETWORK; TIME; PHOTOGRAMMETRY; CLASSIFICATION;
D O I
10.1016/j.jag.2023.103258
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Change detection has been increasingly studied in remote and close-range sensing in the last decades, driven by its importance in environment monitoring and database updating. Due to the development of sensing technologies, data acquisition has become more accessible and affordable and thus more data from various sensing platforms have become available. Thanks to structure-from-motion photogrammetry and lidar technologies, 3D change detection from point cloud data is drawing considerable attention in recent years. Motivated by the lack of a comprehensive review of 3D change detection in the urban environment, this paper reviews the latest developments in urban object change detection using point cloud data. In particular, four types of objects, namely building, street scene, urban tree, and construction site, are analysed in-depth. The use of different data sources for each object-of-interest and the open-source data with change labels are summarised. Then the change detection methods are thoroughly reviewed at pixel, point, voxel, segment and object levels, whose pros and cons are analysed in detail. Moreover, the challenges and opportunities brought by point cloud data and new methods, such as Siamese network deep learning, are discussed for future considerations.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Graph Neural Network and Spatiotemporal Transformer Attention for 3D Video Object Detection From Point Clouds
    Yin, Junbo
    Shen, Jianbing
    Gao, Xin
    Crandall, David J.
    Yang, Ruigang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9822 - 9835
  • [42] Multi-Scale Keypoints Feature Fusion Network for 3D Object Detection from Point Clouds
    Zhang, Xu
    Bai, Linjuan
    Zhang, Zuyu
    Li, Yan
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2022, 12
  • [43] RETRACTED ARTICLE: Scale invariant point feature (SIPF) for 3D point clouds and 3D multi-scale object detection
    Baowei Lin
    Fasheng Wang
    Fangda Zhao
    Yi Sun
    Neural Computing and Applications, 2018, 29 : 1209 - 1224
  • [44] Efficient and accurate object detection for 3D point clouds in intelligent visual internet of things
    Hui Li
    Junyin Wang
    Lingwei Xu
    Shujun Zhang
    Ye Tao
    Multimedia Tools and Applications, 2021, 80 : 31297 - 31334
  • [45] Scene recognition for 3D point clouds:a review
    Hao W.
    Zhang W.
    Liang W.
    Xiao Z.
    Jin H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (16): : 1988 - 2005
  • [46] Classification of 3D UAS-SfM Point Clouds in the Urban Environment
    Ntuli, Simiso
    Forbes, Angus
    SOUTH AFRICAN JOURNAL OF GEOMATICS, 2023, 12 (02): : 190 - 205
  • [47] A Review of Fine Registration for 3D Point Clouds
    Xian, Yaru
    Xiao, Jun
    Wang, Ying
    Shan, Mengyi
    Zhou, Chong
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND COMPUTER SCIENCE, 2016, 80 : 108 - 113
  • [48] 3D Scene Graph Generation From Point Clouds
    Wei, Wenwen
    Wei, Ping
    Qin, Jialu
    Liao, Zhimin
    Wang, Shuaijie
    Cheng, Xiang
    Liu, Meiqin
    Zheng, Nanning
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5358 - 5368
  • [49] Complete residential urban area reconstruction from dense aerial LiDAR point clouds
    Zhou, Qian-Yi
    Neumann, Ulrich
    GRAPHICAL MODELS, 2013, 75 : 118 - 125
  • [50] Efficient 3D object recognition using foveated point clouds
    Gomes, Rafael Beserra
    Ferreira da Silva, Bruno Marques
    de Medeiros Rocha, Lourena Karin
    Aroca, Rafael Vidal
    Pacheco Rodrigues Velho, Luiz Carlos
    Garcia Goncalves, Luiz Marcos
    COMPUTERS & GRAPHICS-UK, 2013, 37 (05): : 496 - 508