An Attention-Based Deep Convolutional Neural Network for Brain Tumor and Disorder Classification and Grading in Magnetic Resonance Imaging

被引:9
作者
Apostolopoulos, Ioannis D. D. [1 ]
Aznaouridis, Sokratis [2 ]
Tzani, Mpesi [3 ]
机构
[1] Univ Patras, Sch Med, Dept Med Phys, Rion 26504, Greece
[2] Univ Patras, Dept Comp Engn & Informat, Rion 26504, Greece
[3] Univ Patras, Dept Elect & Comp Technol Engn, Rion 26504, Greece
关键词
artificial intelligence; deep learning; attention module; feature fusion; magnetic resonance imaging; DEMENTIA; MRI; BOXES; SUM;
D O I
10.3390/info14030174
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study proposes the integration of attention modules, feature-fusion blocks, and baseline convolutional neural networks for developing a robust multi-path network that leverages its multiple feature-extraction blocks for non-hierarchical mining of important medical image-related features. The network is evaluated using 10-fold cross-validation on large-scale magnetic resonance imaging datasets involving brain tumor classification, brain disorder classification, and dementia grading tasks. The Attention Feature Fusion VGG19 (AFF-VGG19) network demonstrates superiority against state-of-the-art networks and attains an accuracy of 0.9353 in distinguishing between three brain tumor classes, an accuracy of 0.9565 in distinguishing between Alzheimer's and Parkinson's diseases, and an accuracy of 0.9497 in grading cases of dementia.
引用
收藏
页数:13
相关论文
共 32 条
  • [1] Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
    Akkus, Zeynettin
    Galimzianova, Alfiia
    Hoogi, Assaf
    Rubin, Daniel L.
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 449 - 459
  • [2] Alloghani M, 2020, Supervised and unsupervised learning for data science, P3, DOI [10.1007/978-3-030-22475-2_1, DOI 10.1007/978-3-030-22475-2_1]
  • [3] Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning
    Apostolopoulos, Ioannis D.
    Papathanasiou, Nikolaos D.
    Panayiotakis, George S.
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (04) : 1243 - 1257
  • [4] Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques
    Apostolopoulos, Ioannis D.
    Pintelas, Emmanuel G.
    Livieris, Ioannis E.
    Apostolopoulos, Dimitris J.
    Papathanasiou, Nikolaos D.
    Pintelas, Panagiotis E.
    Panayiotakis, George S.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (06) : 1299 - 1310
  • [5] Bhan Anupama, 2021, Proceedings of the Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV 2020), P1467, DOI 10.1109/ICICV50876.2021.9388571
  • [6] Suitability of the Clinical Dementia Rating-Sum of Boxes as a single primary endpoint for Alzheimer's disease trials
    Coley, Nicola
    Andrieu, Sandrine
    Jaros, Mark
    Weiner, Michael
    Cedarbaum, Jesse
    Vellas, Bruno
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (06) : 602 - 610
  • [7] A mitochondrial etiology of Alzheimer and Parkinson disease
    Coskun, Pinar
    Wyrembak, Joanne
    Schriner, Samual E.
    Chen, Hsiao-Wen
    Marciniack, Christine
    LaFerla, Frank
    Wallace, Douglas C.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2012, 1820 (05): : 553 - 564
  • [8] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [9] Galanin System in Human Glioma and Pituitary Adenoma
    Falkenstetter, Sarah
    Leitner, Julia
    Brunner, Susanne M.
    Rieder, Tim N.
    Kofler, Barbara
    Weis, Serge
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2020, 11
  • [10] Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN Augmentation
    Gab Allah, Ahmed M.
    Sarhan, Amany M.
    Elshennawy, Nada M.
    [J]. DIAGNOSTICS, 2021, 11 (12)