On the Functional Independence of the Riemann Zeta-Function

被引:1
|
作者
Garbaliauskiene, Virginija [1 ]
Macaitiene, Renata [2 ]
Siauciunas, Darius [2 ]
机构
[1] Siauliai State Univ Appl Sci, Fac Business & Technol, Ausros Al 40, LT-76241 Shiauliai, Lithuania
[2] Vilnius Univ, Inst Reg Dev, Siauliai Acad, P Visinskio G 25, LT-76153 Shiauliai, Lithuania
关键词
functional independence; Riemann zeta-function; universality of zeta-functions; JOINT VALUE-DISTRIBUTION; UNIVERSALITY;
D O I
10.3846/mma.2023.17157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1973, Voronin proved the functional independence of the Riemann zeta-function zeta (s), i.e., that zeta(s) and its derivatives do not satisfy a certain equation with continuous functions. In the paper, we obtain a joint version of the Voronin theorem.
引用
收藏
页码:352 / 359
页数:8
相关论文
共 50 条
  • [41] ON SOME PROBLEMS IN THE THEORY OF RIEMANN ZETA-FUNCTION
    Korobeinik, Yu. F.
    UFA MATHEMATICAL JOURNAL, 2015, 7 (04): : 88 - 93
  • [42] Some identities related to Riemann zeta-function
    Lin Xin
    Journal of Inequalities and Applications, 2016
  • [43] Several identities relating to Riemann zeta-Function
    Wu, Zhengang
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (03): : 285 - 294
  • [44] Some identities related to Riemann zeta-function
    Xin, Lin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 6
  • [45] Discrete Schwartz distributions and the Riemann zeta-function
    Florin Nicolae
    Alberto Verjovsky
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 211 - 221
  • [46] About Riemann's Zeta-Function and Applications
    Daili, Noureddine
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (03): : 461 - 479
  • [47] Shifted fourth moment of the Riemann zeta-function
    Shimomura, S.
    ACTA MATHEMATICA HUNGARICA, 2012, 137 (1-2) : 104 - 129
  • [48] Shifted fourth moment of the Riemann zeta-function
    Shun Shimomura
    Acta Mathematica Hungarica, 2012, 137 : 104 - 129
  • [49] Approximation by generalized shifts of the Riemann zeta-function in short intervals
    Antanas Laurinčikas
    The Ramanujan Journal, 2021, 56 : 309 - 322
  • [50] Difference independence of the Riemann zeta function
    Chiang, Yik-Man
    Feng, Shao-Ji
    ACTA ARITHMETICA, 2006, 125 (04) : 317 - 329