On the Functional Independence of the Riemann Zeta-Function

被引:1
|
作者
Garbaliauskiene, Virginija [1 ]
Macaitiene, Renata [2 ]
Siauciunas, Darius [2 ]
机构
[1] Siauliai State Univ Appl Sci, Fac Business & Technol, Ausros Al 40, LT-76241 Shiauliai, Lithuania
[2] Vilnius Univ, Inst Reg Dev, Siauliai Acad, P Visinskio G 25, LT-76153 Shiauliai, Lithuania
关键词
functional independence; Riemann zeta-function; universality of zeta-functions; JOINT VALUE-DISTRIBUTION; UNIVERSALITY;
D O I
10.3846/mma.2023.17157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1973, Voronin proved the functional independence of the Riemann zeta-function zeta (s), i.e., that zeta(s) and its derivatives do not satisfy a certain equation with continuous functions. In the paper, we obtain a joint version of the Voronin theorem.
引用
收藏
页码:352 / 359
页数:8
相关论文
共 50 条
  • [31] Dirichlet series induced by the Riemann zeta-function
    Tanaka, Jun-Ichi
    STUDIA MATHEMATICA, 2008, 187 (02) : 157 - 184
  • [32] On the distribution of values of the argument of the Riemann zeta-function
    Ivic, Aleksandar P.
    Korolev, Maxim A.
    JOURNAL OF NUMBER THEORY, 2019, 200 : 96 - 131
  • [33] On the Approximation by Mellin Transform of the Riemann Zeta-Function
    Korolev, Maxim
    Laurincikas, Antanas
    AXIOMS, 2023, 12 (06)
  • [34] Discrete Schwartz distributions and the Riemann zeta-function
    Nicolae, Florin
    Verjovsky, Alberto
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (02): : 211 - 221
  • [35] On gaps between zeros of the Riemann zeta-function
    Feng, Shaoji
    Wu, Xiaosheng
    JOURNAL OF NUMBER THEORY, 2012, 132 (07) : 1385 - 1397
  • [36] AN APPLICATION OF GENERALIZED MOLLIFIERS TO THE RIEMANN ZETA-FUNCTION
    Sono, Keiju
    KYUSHU JOURNAL OF MATHEMATICS, 2018, 72 (01) : 35 - 69
  • [37] BANDLIMITED APPROXIMATIONS AND ESTIMATES FOR THE RIEMANN ZETA-FUNCTION
    Carneiro, Emanuel
    Chirre, Andres
    Milinovich, Micah B.
    PUBLICACIONS MATEMATIQUES, 2019, 63 (02) : 601 - 661
  • [38] On integral representations for powers of the Riemann zeta-function
    Ivic, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (3-4): : 469 - 495
  • [39] On the divisor function and the Riemann zeta-function in short intervals
    Ivic, Aleksandar
    RAMANUJAN JOURNAL, 2009, 19 (02) : 207 - 224
  • [40] A remark on negative moments of the Riemann zeta-function
    Laurinčikas A.
    Lithuanian Mathematical Journal, 2000, 40 (1) : 23 - 28