Validation of a Probabilistic Prediction Model for Patients with Type 1 Diabetes Using Compositional Data Analysis

被引:1
|
作者
Cabrera, Alvis [1 ]
Biagi, Lyvia [2 ]
Beneyto, Aleix [1 ]
Estremera, Ernesto [1 ]
Contreras, Ivan [1 ]
Gimenez, Marga [3 ,4 ]
Conget, Ignacio [3 ,4 ]
Bondia, Jorge [4 ,5 ]
Martin-Fernandez, Josep Antoni [6 ]
Vehi, Josep [1 ,4 ]
机构
[1] Univ Girona, Dept Elect Elect & Automat Engn, Girona 17003, Spain
[2] Fed Univ Technol Parana UTFPR, Campus Guarapuava, BR-85053525 Guarapuava, Brazil
[3] Hosp Clin Barcelona, Endocrinol & Nutr Dept, Diabet Unit, Barcelona 08036, Spain
[4] Inst Salud Carlos III, Ctr Invest Biomed Red Diabet & Enfermedades Metab, Madrid 28029, Spain
[5] Univ Politecn Valencia, Inst Univ Automat Informat Ind, Valencia 46022, Spain
[6] Univ Girona, Dept Comp Sci Appl Math & Stat, Girona 17003, Spain
关键词
compositional data; continuous glucose monitoring; prediction model; time in range; type; 1; diabetes;
D O I
10.3390/math11051241
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Glycemia assessment in people with type 1 diabetes (T1D) has focused on the time spent in different glucose ranges. As this time reflects the relative contributions to the finite duration of a day, it should be treated as compositional data (CoDa) that can be applied to T1D data. Previous works presented a tool for the individual categorization of days and proposed a probabilistic transition model between categories, although validation has hitherto not been presented. In this study, we consider data from eight real adult patients with T1D obtained from continuous glucose monitoring (CGM) sensors and introduce a methodology based on compositional methods to validate the previously presented probability transition model. We conducted 5-fold cross-validation, with both the training and validation data being CoDa vectors, which requires developing new performance metrics. We design new accuracy and precision measures based on statistical error calculations. The results show that the precision for the entire model is higher than 95% in all patients. The use of a probabilistic transition model can help doctors and patients in diabetes treatment management and decision-making. Although the proposed method was tested with CoDa applied to T1D data obtained from CGM, the newly developed accuracy and precision measures apply to any other data or validation based on CoDa.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Probabilistic Model of Transition between Categories of Glucose Profiles in Patients with Type 1 Diabetes Using a Compositional Data Analysis Approach
    Biagi, Lyvia
    Bertachi, Arthur
    Gimenez, Marga
    Conget, Ignacio
    Bondia, Jorge
    Martin-Fernandez, Josep Antoni
    Vehi, Josep
    SENSORS, 2021, 21 (11)
  • [2] Compositional Data Analysis of Glucose Profiles of Type 1 Diabetes Patients
    Biagi, Lyvia
    Bertachi, Arthur
    Antoni Martin-Fernandez, Josep
    Vehi, Josep
    IFAC PAPERSONLINE, 2019, 52 (01): : 1006 - 1011
  • [3] Establishment and validation of a prediction model for ischemic stroke risks in patients with type 2 diabetes
    Li, Tsai-Chung
    Wang, Hsiang-Chi
    Li, Chia-Ing
    Liu, Chiu-Shong
    Lin, Wen-Yuan
    Lin, Chih-Hsueh
    Yang, Sing-Yu
    Lin, Cheng-Chieh
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2018, 138 : 220 - 228
  • [4] Development and validation of a cardiovascular risk prediction model in type 1 diabetes
    McGurnaghan, Stuart J.
    McKeigue, Paul M.
    Read, Stephanie H.
    Franzen, Stefan
    Svensson, Ann-Marie
    Colombo, Marco
    Livingstone, Shona
    Farran, Bassam
    Caparrotta, Thomas M.
    Blackbourn, Luke A. K.
    Mellor, Joseph
    Thoma, Ioanna
    Sattar, Naveed
    Wild, Sarah H.
    Gudbjornsdottir, Soffia
    Colhoun, Helen M.
    DIABETOLOGIA, 2021, 64 (09) : 2001 - 2011
  • [5] Progression to microalbuminuria in type 1 diabetes: development and validation of a prediction rule
    Vergouwe, Y.
    Soedamah-Muthu, S. S.
    Zgibor, J.
    Chaturvedi, N.
    Forsblom, C.
    Snell-Bergeon, J. K.
    Maahs, D. M.
    Groop, P. -H.
    Rewers, M.
    Orchard, T. J.
    Fuller, J. H.
    Moons, K. G. M.
    DIABETOLOGIA, 2010, 53 (02) : 254 - 262
  • [6] Model Identification using Continuous Glucose Monitoring Data for Type 1 Diabetes
    Boiroux, Dimitri
    Hagdrup, Morten
    Mahmoudi, Zeinab
    Poulsen, Niels Kjolstad
    Madsen, Henrik
    Jorgensen, John Bagterp
    IFAC PAPERSONLINE, 2016, 49 (07): : 759 - 764
  • [7] External validation of the American prediction model for incident type 2 diabetes in the Iranian population
    Asgari, Samaneh
    Khalili, Davood
    Azizi, Fereidoun
    Hadaegh, Farzad
    BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [8] Derivation and Validation of a Prediction Model of End-Stage Renal Disease in Patients With Type 2 Diabetes Based on a Systematic Review and Meta-analysis
    Ren, Qiuyue
    Chen, Dong
    Liu, Xinbang
    Yang, Ronglu
    Yuan, Lisha
    Ding, Min
    Zhang, Ning
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [9] Risk score prediction model for dementia in patients with type 2 diabetes
    Li, C. -I.
    Li, T. -C.
    Liu, C. -S.
    Liao, L. -N.
    Lin, W. -Y.
    Lin, C. -H.
    Yang, S. -Y.
    Chiang, J. -H.
    Lin, C. -C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2018, 25 (07) : 976 - 983
  • [10] Development and Validation of a Chronic Kidney Disease Prediction Model for Type 2 Diabetes Mellitus in Thailand
    Tuntayothin, Wilailuck
    Kerr, Stephen John
    Boonyakrai, Chanchana
    Udomkarnjananun, Suwasin
    Chukaew, Sumitra
    Sakulbumrungsil, Rungpetch
    VALUE IN HEALTH REGIONAL ISSUES, 2021, 24 : 157 - 166