Deep learning-assisted diagnosis of femoral trochlear dysplasia based on magnetic resonance imaging measurements

被引:1
|
作者
Xu, Sheng-Ming [1 ]
Dong, Dong [2 ]
Li, Wei [1 ]
Bai, Tian [3 ]
Zhu, Ming-Zhu [3 ]
Gu, Gui-Shan [1 ,4 ]
机构
[1] First Hosp Jilin Univ, Dept Orthoped Surg, Changchun 130000, Jilin, Peoples R China
[2] First Hosp Jilin Univ, Dept Radiol, Changchun 130000, Jilin, Peoples R China
[3] Jilin Univ, Coll Comp Sci & Technol, Changchun 130000, Jilin, Peoples R China
[4] First Hosp Jilin Univ, Dept Orthoped Surg, 71 Xinmin St, Changchun 130000, Jilin, Peoples R China
关键词
Femoral trochlear dysplasia; Deep learning; Artificial intelligence; Magnetic resonance imaging; Diagnosis; PATELLAR DISLOCATION; CLASSIFICATION;
D O I
10.12998/wjcc.v11.i7.1477
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUNDFemoral trochlear dysplasia (FTD) is an important risk factor for patellar instability. Dejour classification is widely used at present and relies on standard lateral X-rays, which are not common in clinical work. Therefore, magnetic resonance imaging (MRI) has become the first choice for the diagnosis of FTD. However, manually measuring is tedious, time-consuming, and easily produces great variability.AIMTo use artificial intelligence (AI) to assist diagnosing FTD on MRI images and to evaluate its reliability.METHODSWe searched 464 knee MRI cases between January 2019 and December 2020, including FTD (n = 202) and normal trochlea (n = 252). This paper adopts the heatmap regression method to detect the key points network. For the final evaluation, several metrics (accuracy, sensitivity, specificity, etc.) were calculated.RESULTSThe accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the AI model ranged from 0.74-0.96. All values were superior to junior doctors and intermediate doctors, similar to senior doctors. However, diagnostic time was much lower than that of junior doctors and intermediate doctors.CONCLUSIONThe diagnosis of FTD on knee MRI can be aided by AI and can be achieved with a high level of accuracy.
引用
收藏
页码:1477 / 1487
页数:11
相关论文
共 50 条
  • [21] Deep learning-assisted diagnosis of parotid gland tumors by using contrast-enhanced CT imaging
    Shen, Xue-Meng
    Mao, Liang
    Yang, Zhi-Yi
    Chai, Zi-Kang
    Sun, Ting-Guan
    Xu, Yongchao
    Sun, Zhi-Jun
    ORAL DISEASES, 2023, 29 (08) : 3325 - 3336
  • [22] Deep learning based-classification of dementia in magnetic resonance imaging scans
    Ucuzal, Hasan
    Arslan, Ahmet K.
    Colak, Cemil
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP 2019), 2019,
  • [23] Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging
    Abdusalomov, Akmalbek Bobomirzaevich
    Mukhiddinov, Mukhriddin
    Whangbo, Taeg Keun
    CANCERS, 2023, 15 (16)
  • [24] Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs
    Choi, Jae Won
    Cho, Yeon Jin
    Ha, Ji Young
    Lee, Yun Young
    Koh, Seok Young
    Seo, June Young
    Choi, Young Hun
    Cheon, Jung-Eun
    Phi, Ji Hoon
    Kim, Injoon
    Yang, Jaekwang
    Kim, Woo Sun
    KOREAN JOURNAL OF RADIOLOGY, 2022, 23 (03) : 343 - 354
  • [25] Deep Learning-Assisted Diffusion Tensor Imaging for Evaluation of the Physis and Metaphysis
    Duong, Phuong T.
    Santos, Laura
    Hsu, Hao-Yun
    Jambawalikar, Sachin
    Mutasa, Simukayi
    Nguyen, Michael K.
    Guariento, Andressa
    Jaramillo, Diego
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (02): : 756 - 765
  • [26] Cloud-based deep learning-assisted system for diagnosis of sports injuries
    Xiaoe Wu
    Jincheng Zhou
    Maoxing Zheng
    Shanwei Chen
    Dan Wang
    Joseph Anajemba
    Guangnan Zhang
    Maha Abdelhaq
    Raed Alsaqour
    Mueen Uddin
    Journal of Cloud Computing, 11
  • [27] An ensemble reinforcement learning-assisted deep learning framework for enhanced lung cancer diagnosis
    Jain, Richa
    Singh, Parminder
    Kaur, Avinash
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 91
  • [28] Cloud-based deep learning-assisted system for diagnosis of sports injuries
    Wu, Xiaoe
    Zhou, Jincheng
    Zheng, Maoxing
    Chen, Shanwei
    Wang, Dan
    Anajemba, Joseph
    Zhang, Guangnan
    Abdelhaq, Maha
    Alsaqour, Raed
    Uddin, Mueen
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [29] Artificial Intelligence and Deep Learning in Musculoskeletal Magnetic Resonance Imaging
    Baek, Seung Dae
    Lee, Joohee
    Kim, Sungjun
    Song, Ho-Taek
    Lee, Young Han
    INVESTIGATIVE MAGNETIC RESONANCE IMAGING, 2023, 27 (02) : 67 - 74
  • [30] Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
    Bien, Nicholas
    Rajpurkar, Pranav
    Ball, Robyn L.
    Irvin, Jeremy
    Park, Allison
    Jones, Erik
    Bereket, Michael
    Patel, Bhavik N.
    Yeom, Kristen W.
    Shpanskaya, Katie
    Halabi, Safwan
    Zucker, Evan
    Fanton, Gary
    Amanatullah, Derek F.
    Beaulieu, Christopher F.
    Riley, Geoffrey M.
    Stewart, Russell J.
    Blankenberg, Francis G.
    Larson, David B.
    Jones, Ricky H.
    Langlotz, Curtis P.
    Ng, Andrew Y.
    Lungren, Matthew P.
    PLOS MEDICINE, 2018, 15 (11)