Interactive gene identification for cancer subtyping based on multi-omics clustering

被引:7
作者
Ye, Xiucai [1 ]
Shi, Tianyi [2 ]
Cui, Yaxuan [1 ]
Sakurai, Tetsuya [1 ,2 ]
机构
[1] Univ Tsukuba, Dept Comp Sci, Tsukuba 3058577, Japan
[2] Univ Tsukuba, Tsukuba Life Sci Innovat Program, Tsukuba 3058577, Japan
关键词
Interactive genes identification; Cancer subtyping; Multi-omics clustering; Gene co-expression network; DISCOVERY; NETWORK;
D O I
10.1016/j.ymeth.2023.02.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in multi-omics databases offer the opportunity to explore complex systems of cancers across hierarchical biological levels. Some methods have been proposed to identify the genes that play a vital role in disease development by integrating multi-omics. However, the existing methods identify the related genes separately, neglecting the gene interactions that are related to the multigenic disease. In this study, we develop a learning framework to identify the interactive genes based on multi-omics data including gene expression. Firstly, we integrate different omics based on their similarities and apply spectral clustering for cancer subtype identification. Then, a gene co-expression network is construct for each cancer subtype. Finally, we detect the interactive genes in the co-expression network by learning the dense subgraphs based on the L1 prosperities of eigenvectors in the modularity matrix. We apply the proposed learning framework on a multi-omics cancer dataset to identify the interactive genes for each cancer subtype. The detected genes are examined by DAVID and KEGG tools for systematic gene ontology enrichment analysis. The analysis results show that the detected genes have relationships to cancer development and the genes in different cancer subtypes are related to different biological processes and pathways, which are expected to yield important references for understanding tumor heterogeneity and improving patient survival.
引用
收藏
页码:61 / 67
页数:7
相关论文
共 44 条
[1]   Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach [J].
Anjum, Arfa ;
Jaggi, Seema ;
Varghese, Eldho ;
Lall, Shwetank ;
Bhowmik, Arpan ;
Rai, Anil .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2016, 23 (04) :239-247
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   The landscape of somatic copy-number alteration across human cancers [J].
Beroukhim, Rameen ;
Mermel, Craig H. ;
Porter, Dale ;
Wei, Guo ;
Raychaudhuri, Soumya ;
Donovan, Jerry ;
Barretina, Jordi ;
Boehm, Jesse S. ;
Dobson, Jennifer ;
Urashima, Mitsuyoshi ;
Mc Henry, Kevin T. ;
Pinchback, Reid M. ;
Ligon, Azra H. ;
Cho, Yoon-Jae ;
Haery, Leila ;
Greulich, Heidi ;
Reich, Michael ;
Winckler, Wendy ;
Lawrence, Michael S. ;
Weir, Barbara A. ;
Tanaka, Kumiko E. ;
Chiang, Derek Y. ;
Bass, Adam J. ;
Loo, Alice ;
Hoffman, Carter ;
Prensner, John ;
Liefeld, Ted ;
Gao, Qing ;
Yecies, Derek ;
Signoretti, Sabina ;
Maher, Elizabeth ;
Kaye, Frederic J. ;
Sasaki, Hidefumi ;
Tepper, Joel E. ;
Fletcher, Jonathan A. ;
Tabernero, Josep ;
Baselga, Jose ;
Tsao, Ming-Sound ;
Demichelis, Francesca ;
Rubin, Mark A. ;
Janne, Pasi A. ;
Daly, Mark J. ;
Nucera, Carmelo ;
Levine, Ross L. ;
Ebert, Benjamin L. ;
Gabriel, Stacey ;
Rustgi, Anil K. ;
Antonescu, Cristina R. ;
Ladanyi, Marc ;
Letai, Anthony .
NATURE, 2010, 463 (7283) :899-905
[4]   Prospects and challenges of multi-omics data integration in toxicology [J].
Canzler, Sebastian ;
Schor, Jana ;
Busch, Wibke ;
Schubert, Kristin ;
Rolle-Kampczyk, Ulrike E. ;
Seitz, Herve ;
Kamp, Hennicke ;
von Bergen, Martin ;
Buesen, Roland ;
Hackermueller, Joerg .
ARCHIVES OF TOXICOLOGY, 2020, 94 (02) :371-388
[5]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[6]   Translating insights from the cancer genome into clinical practice [J].
Chin, Lynda ;
Gray, Joe W. .
NATURE, 2008, 452 (7187) :553-563
[7]  
Davis-Dusenbery Brandi N, 2010, Genes Cancer, V1, P1100, DOI 10.1177/1947601910396213
[8]   Focal adhesion signaling and therapy resistance in cancer [J].
Eke, Iris ;
Cordes, Nils .
SEMINARS IN CANCER BIOLOGY, 2015, 31 :65-75
[9]   Spectral Anomaly Detection in Large Graphs Using a Complex Moment-Based Eigenvalue Solver [J].
Futamura, Yasunori ;
Ye, Xiucai ;
Imakura, Akira ;
Sakurai, Tetsuya .
ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2020, 6 (02)
[10]   A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression [J].
Gerring, Zachary F. ;
Gamazonz, Eric R. ;
Derks, Eske M. .
PLOS GENETICS, 2019, 15 (07)