Short-term photovoltaic power production forecasting based on novel hybrid data-driven models

被引:16
|
作者
Alrashidi, Musaed [1 ]
Rahman, Saifur [2 ]
机构
[1] Qassim Univ, Coll Engn, Dept Elect Engn, Buraydah 52571, Saudi Arabia
[2] Virginia Tech, Adv Res Inst, Bradley Dept Elect & Comp Engn, Arlington, VA 22203 USA
关键词
PV power forecast; Machine learning; Metaheuristic Optimization Algorithms; Hyperparameters and architectures tuning; Feature selection; SUPPORT VECTOR REGRESSION; NEURAL-NETWORK; SOLAR-RADIATION; WIND-SPEED; OPTIMIZATION; DECOMPOSITION; ALGORITHM;
D O I
10.1186/s40537-023-00706-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles that hinder their seamless integration into power systems. The fluctuation, which is influenced by the weather conditions, poses significant challenges to local energy management systems. Hence, the accuracy of PV power forecasting is very important, particularly in regions with high PV penetrations. This study addresses this issue by presenting a framework of novel forecasting methodologies based on hybrid data-driven models. The proposed forecasting models hybridize Support Vector Regression (SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo Search Optimization, and Neural Network Algorithm. These optimization algorithms are utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection of their hyperparameters and architectures plays a significant role in yielding precise forecasting outcomes. In addition, the proposed methodology aims to reduce the burden of random or manual estimation of such paraments and improve the robustness of the models that are subject to under and overfitting without proper tuning. The results of this study exhibit the superiority of the proposed models. The proposed SVR models show improvements compared to the default SVR models, with Root Mean Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research work can uphold and support the ongoing efforts in developing accurate data-driven models for PV forecasting.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] PV power forecasting based on data-driven models: a review
    Gupta, Priya
    Singh, Rhythm
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING, 2021, 14 (06) : 1733 - 1755
  • [32] Short-term photovoltaic power forecasting for photovoltaic power station based on EWT-KMPMR
    Li Q.
    Sun Y.
    Yu Y.
    Wang C.
    Ma T.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (20): : 265 - 273
  • [33] Short-Term Forecasting of Power Production in a Large-Scale Photovoltaic Plant Based on LSTM
    Gao, Mingming
    Li, Jianjing
    Hong, Feng
    Long, Dongteng
    APPLIED SCIENCES-BASEL, 2019, 9 (15):
  • [34] Short-term photovoltaic power forecasting based on Stacking-SVM
    Zhou, Hangxia
    Zhang, Yujin
    Yang, Lingfan
    Liu, Qian
    2018 NINTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION (ITME 2018), 2018, : 994 - 998
  • [35] Short-Term Photovoltaic Power-Forecasting based on Machine Learning
    Guo, Weilin
    Jiang, Xiaoyan
    Che, Liang
    PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 1276 - 1280
  • [36] Short-term power forecasting for photovoltaic generation based on psoesn model
    Wen R.
    Tan L.
    Li W.
    Li L.
    1600, E-Flow PDF Chinese Institute of Electrical Engineering (24): : 21 - 30
  • [37] Short-term photovoltaic power forecasting based on MIE-LSTM
    Ji X.
    Li H.
    Liu S.
    Wang L.
    Li, Hui (lhbxy@bistu.edu.cn), 1600, Power System Protection and Control Press (48): : 50 - 57
  • [38] Comparative study of data-driven short-term wind power forecasting approaches for the Norwegian Arctic region
    Chen, Hao
    Birkelund, Yngve
    Anfinsen, Stian Normann
    Yuan, Fuqing
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2021, 13 (02)
  • [39] Short-term photovoltaic power forecasting based on fluctuation characteristics mining
    Ji X.
    Li H.
    Ye L.
    Wang L.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 146 - 155
  • [40] Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles
    Zeng, Tao
    Zhang, Caizhi
    Hao, Dong
    Cao, Dongpu
    Chen, Jiawei
    Chen, Jinrui
    Li, Jin
    ENERGY, 2020, 208