Underwater Target Detection Lightweight Algorithm Based on Multi-Scale Feature Fusion

被引:15
|
作者
Chen, Liang [1 ]
Yang, Yuyi [1 ]
Wang, Zhenheng [1 ]
Zhang, Jian [1 ]
Zhou, Shaowu [1 ]
Wu, Lianghong [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
underwater target detection; multi-scale fusion; transformer; YOLOv5; lightweight;
D O I
10.3390/jmse11020320
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The performance of underwater target detection algorithms is affected by poor imaging quality in underwater environments. Due to the arithmetic power limitation of underwater devices, existing deep learning networks are unable to provide efficient detection processes with high detection accuracy. Lightweight CNN models have been actively applied for underwater environment detection, yet their lite feature fusion networks cannot provide effective fusion effects and reduce the detection accuracy. In this paper, a lightweight algorithm based on multi-scale feature fusion was proposed, with the model parameters greatly reduced, improving the target detection accuracy. The forward propagation memory overhead is reduced by using multi-scale shared convolutional kernels and pooling operations to co-construct the query matrix in the Tansformer encoding stage. Then, the feature fusion path is optimized in order to enhance the connection of multi-scale features. A multiscale feature adaptive fusion strategy is used to enhance the detection performance and reduce the dependence on the complex feature extraction network. The feature extraction network is also reparameterized to simplify the operation. Using the UPRC offshore dataset for validation, the study results have demonstrated that the statistical mAP metrics validate the detection accuracy. Compared with SSD, RetinaNet and YOLOv5-s improved by 13%, 8.6%, and 0.8%, while the number of parameters decreased by 76.09%, 89.74%, and 87.67%. In addition, compared with the YOLOv5-lite model algorithm with the same parameter volume, the mAP is improved by 3.8%, which verifies the accuracy and efficiency of the algorithm in this paper.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] YOLO-GEA: infrared target detection algorithm based on multi-scale feature fusion
    Da, Mei
    Tao, Youfeng
    Jiang, Lin
    Hu, Jue
    Zhang, Zhijian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [2] YOLO-LF: a lightweight multi-scale feature fusion algorithm for wheat spike detection
    Zhou, Shuren
    Long, Shengzhen
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [3] Insulator Defect Detection Based on Lightweight Network and Enhanced Multi-scale Feature Fusion
    Chen K.
    Liu X.
    Jia L.
    Fang Y.
    Zhao C.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (03): : 1289 - 1301
  • [4] Underwater Target Detection Algorithm Based on Feature Fusion Enhancement
    Chen, Liang
    Yin, Tao
    Zhou, Shaowu
    Yi, Guo
    Fan, Di
    Zhao, Jin
    ELECTRONICS, 2023, 12 (13)
  • [5] Dynamic distillation based multi-scale lightweight target detection
    Kai Sun
    Danjing Li
    Multimedia Tools and Applications, 2025, 84 (12) : 10221 - 10239
  • [6] RG-YOLO: multi-scale feature learning for underwater target detection
    Zheng, Zhouwang
    Yu, Weiwei
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [7] Airport Clearance Detection Based on Vision Transformer and Multi-Scale Feature Fusion
    Chen, Yutong
    Liu, Yufen
    Guo, Zhixiong
    Gao, Qiang
    IEEE ACCESS, 2025, 13 : 51874 - 51890
  • [8] Underwater Holothurian Target-Detection Algorithm Based on Improved CenterNet and Scene Feature Fusion
    Han, Yanling
    Chen, Liang
    Luo, Yu
    Ai, Hong
    Hong, Zhonghua
    Ma, Zhenling
    Wang, Jing
    Zhou, Ruyan
    Zhang, Yun
    SENSORS, 2022, 22 (19)
  • [9] Multi-scale feature fusion-based lightweight dual stream transformer for detection of paddy leaf disease
    Ajitesh Kumar
    Dhirendra Prasad Yadav
    Deepak Kumar
    Manu Pant
    Gaurav Pant
    Environmental Monitoring and Assessment, 2023, 195
  • [10] Multi-scale feature fusion for pavement crack detection based on Transformer
    Yang, Yalong
    Niu, Zhen
    Su, Liangliang
    Xu, Wenjing
    Wang, Yuanhang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14920 - 14937