Effect of the Laser Cladding Parameters on the Crack Formation and Microstructure during Nickel Superalloy Gas Turbine Engines Repair

被引:10
作者
Dmitrieva, Anastasia [1 ]
Klimova-Korsmik, Olga [1 ]
Gushchina, Marina [1 ]
Korsmik, Rudolf [1 ]
Zadykyan, Grigoriy [1 ]
Tukov, Stepan [1 ]
机构
[1] St Petersburg State Marine Tech Univ, Dept Digital Ind Technol, St Petersburg 190000, Russia
基金
俄罗斯基础研究基金会;
关键词
laser cladding; nickel superalloys; solidification cracking; microstructure; segregation; HEAT-AFFECTED ZONE; DEPOSITION; MECHANISM;
D O I
10.3390/met13020393
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cracking of nickel superalloys with a high content of gamma'-phase remains an unresolved problem, including in technologies for repairing gas turbine engines blades. Laser cladding is a method of material deposition used to repair parts exposed to aggressive environment and surface wear. Cladding parameters have a high influence on cracking susceptibility nickel superalloys. Alloy ZhS32 has a high propensity for hot cracking when exposed to laser radiation. In this work, the study of the structural and phase features of ZhS32 alloy was carried out. A high tendency to form segregation of refractory elements and carbides in the intergranular areas was found. The features of the structure and phase composition of the material for different cladding parameters were studied. The main contribution of technological parameters to the formation of cracks is shown.
引用
收藏
页数:14
相关论文
共 28 条
[1]   Simulation of the Ni3Al intermetallic inclusion growth process during direct laser deposition using Ni-based superalloy powder [J].
Alekseev, Andrey V. ;
Turichin, Gleb A. ;
Klimova-Korsmik, Olga G. ;
Valdaytseva, Ekaterina A. ;
Rashkovets, Mariia V. ;
Nikulina, Aelita A. .
MATERIALS TODAY-PROCEEDINGS, 2020, 30 :756-760
[2]   High-density direct laser deposition (DLD) of CM247LC alloy: microstructure, porosity and cracks [J].
Bidare, Prveen ;
Mehmeti, Aldi ;
Jimenez, Amaia ;
Li, Sheng ;
Garman, Chris ;
Dimov, Stefan ;
Essa, Khamis .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (11-12) :8063-8074
[3]  
Easterling K., 1992, INTRO PHYS METALLURG
[4]  
Kablov E.N., 2012, AIRCR MAT TECHNOL, VS, P11
[5]  
Kablov E.N., 2007, LIGHT ALLOY TECHNOL, V2, P60
[6]  
Kablov E.N., 2005, MOSC U B CHEM, V46, P155
[7]   Technology of high-speed direct laser deposition from Ni-based superalloys [J].
Klimova-Korsmik, Olga ;
Turichin, Gleb ;
Zemlyakov, Evgeniy ;
Babkin, Konstantin ;
Petrovsky, Pavel ;
Travyanov, Andrey .
LASER ASSISTED NET SHAPE ENGINEERING 9 INTERNATIONAL CONFERENCE ON PHOTONIC TECHNOLOGIES PROCEEDINGS OF THE LANE 2016, 2016, 83 :716-722
[8]  
Korsmik Rudolf, 2020, Procedia CIRP, V94, P314, DOI 10.1016/j.procir.2020.09.059
[9]  
Korsmik R.S., 2019, KEY ENG MAT, V822, P481, DOI [10.4028/www.scientific.net/KEM.822.481, DOI 10.4028/WWW.SCIENTIFIC.NET/KEM.822.481]
[10]  
Kou S., 2003, Welding Metallurgy, V2nd edn.