A microwave-assisted decoration of carbon nanotubes with Fe3O4 nanoparticles for efficient electrocatalytic oxygen reduction reaction

被引:12
|
作者
Ajmal, Saira [1 ,2 ]
Kumar, Anuj [3 ]
Yasin, Ghulam [1 ,2 ]
Alam, Mohammed Mujahid [4 ]
Selvaraj, Manickam [4 ]
Tabish, Mohammad [5 ]
Mushtaq, Muhammad Asim [1 ]
Gupta, Ram K. [6 ]
Zhao, Wei [1 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Guangdong, Peoples R China
[3] GLA Univ, Dept Chem, Nanotechnol Res Lab, Mathura 281406, Uttar Pradesh, India
[4] King Khalid Univ, Fac Sci, Dept Chem, POB 9004, Abha 61413, Saudi Arabia
[5] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China
[6] Pittsburg State Univ, Kansas Polymer Res Ctr, Dept Chem, Pittsburg, KS 66762 USA
基金
中国国家自然科学基金;
关键词
Fe; 3; O; 4; nanoparticles; Nanocomposites; Electrocatalysts; DFT calculations; Oxygen reduction reaction; ION; ZNCO2O4;
D O I
10.1016/j.jallcom.2023.169067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrocatalytic oxygen reduction process (ORR) is one of the possible methods for producing sus-tainable energy, but its slow kinetics necessitates the use of inexpensive and efficient catalysts. Herein, Fe3O4 nanoparticles (Fe3O4 NPs) were loaded onto multiwall carbon nanotubes (Fe3O4@CNTs) using a single-step microwave-assisted strategy. The prepared Fe3O4@CNTs composite was characterized via mul-tiple analytical techniques, and the results suggested a thin film of Fe3O4 NPs coating on the CNT surface, having a high specific surface area and pore volume. The prepared Fe3O4@CNTs composite exhibited a positive shift in ORR half-wave potential of 240 and 20 mV with respect to Fe3O4 and 20% Pt/C catalysts, respectively. The improved ORR activity of the Fe3O4@CNTs composite can be attributed to the synergetic interaction between CNTs and Fe3O4, which is also supported by theoretical simulations. Furthermore, the Fe3O4@CNTs composite showed superior cycling stability and remarkable methanol tolerance, proving its applicability as an ORR catalyst at a practical level. This research will aid in the development of microwave -based strategies for producing efficient ORR catalysts. It will also give a basic understanding of the re-lationships between composition, structure, and activity.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fe3O4 nanoparticles: Microwave-assisted Synthesis and Mechanism
    Liu, Zhenlong
    Miao, Fei
    Hua, Wei
    Zhao, Feng
    MATERIALS LETTERS, 2012, 67 (01) : 358 - 361
  • [2] Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe3O4 nanorods
    Hadidi, Lida
    Davari, Elaheh
    Ivey, Douglas G.
    Veinot, Jonathan G. C.
    NANOTECHNOLOGY, 2017, 28 (09)
  • [3] Microwave-Assisted Rapid Synthesis of Magnetite Fe3O4 Nanoparticles
    Deng, Chonghai
    Hu, Hanmei
    Ge, Xinqing
    Han, Chengliang
    Zhao, Difang
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (10) : 5542 - 5544
  • [4] Electrocatalytic activity of starch/Fe3O4/zeolite bionanocomposite for oxygen reduction reaction
    Abdullah, Nurul Hidayah
    Shameli, Kamyar
    Nia, Pooria Moozarm
    Etesami, Mohammad
    Abdullah, Ezzat Chan
    Abdullah, Luqman Chuah
    ARABIAN JOURNAL OF CHEMISTRY, 2020, 13 (01) : 1297 - 1308
  • [5] Microwave-assisted polyol synthesis of PtCu/carbon nanotube catalysts for electrocatalytic oxygen reduction
    El-Deeb, Heba
    Bron, Michael
    JOURNAL OF POWER SOURCES, 2015, 275 : 893 - 900
  • [6] Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption
    Jialiang Pan
    Honggui Guo
    Min Wang
    Hui Yang
    Haowen Hu
    Peng Liu
    Hongwei Zhu
    Nano Research, 2020, 13 : 621 - 629
  • [7] Magnetic Fe3O4 nanoparticles prepared by a facile and green microwave-assisted approach
    Miao, Fei
    Hua, Wei
    Hu, Li
    Huang, Kama
    MATERIALS LETTERS, 2011, 65 (06) : 1031 - 1033
  • [8] Hybrid of Fe3O4 nanorods and N-doped carbon as efficient oxygen reduction electrocatalyst
    Wang, Wang
    Si, Jiaojiao
    Li, Jun
    Wang, Qiang
    Chen, Shengli
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (38) : 16858 - 16864
  • [9] Microwave-Assisted Combustion Synthesis of Fe3O4 Undoped and Cr-Doped Fe3O4 Nanoparticles: Morphological, Structural, Optical, and Magnetic Behavior
    A. Nallathambi
    A. Prakasam
    R. Azhagu Raj
    Journal of Superconductivity and Novel Magnetism, 2020, 33 : 2443 - 2450
  • [10] Fe3O4/Fe3C@Nitrogen-Doped Carbon for Enhancing Oxygen Reduction Reaction
    Liu, Mincong
    Guo, Xuhong
    Hu, Libing
    Yuan, Huifang
    Wang, Gang
    Dai, Bin
    Zhang, Lili
    Yu, Feng
    CHEMNANOMAT, 2019, 5 (02) : 187 - 193