A Medical Image Segmentation Method Based on Improved UNet 3+ Network

被引:29
|
作者
Xu, Yang [1 ]
Hou, Shike [1 ]
Wang, Xiangyu [2 ]
Li, Duo [1 ]
Lu, Lu [1 ]
机构
[1] Tianjin Univ, Inst Disaster & Emergency Med, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China
关键词
medical image segmentation; deep learning; UNet network; multi-scale skip connections; attention mechanism; COMPUTER-AIDED DIAGNOSIS;
D O I
10.3390/diagnostics13030576
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In recent years, segmentation details and computing efficiency have become more important in medical image segmentation for clinical applications. In deep learning, UNet based on a convolutional neural network is one of the most commonly used models. UNet 3+ was designed as a modified UNet by adopting the architecture of full-scale skip connections. However, full-scale feature fusion can result in excessively redundant computations. This study aimed to reduce the network parameters of UNet 3+ while further improving the feature extraction capability. First, to eliminate redundancy and improve computational efficiency, we prune the full-scale skip connections of UNet 3+. In addition, we use the attention module called Convolutional Block Attention Module (CBAM) to capture more essential features and thus improve the feature expression capabilities. The performance of the proposed model was validated by three different types of datasets: skin cancer segmentation, breast cancer segmentation, and lung segmentation. The parameters are reduced by about 36% and 18% compared to UNet and UNet 3+, respectively. The results show that the proposed method not only outperformed the comparison models in a variety of evaluation metrics but also achieved more accurate segmentation results. The proposed models have lower network parameters that enhance feature extraction and improve segmentation performance efficiently. Furthermore, the models have great potential for application in medical imaging computer-aided diagnosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] STU3: Multi-organ CT Medical Image Segmentation Model Based on Transformer and UNet
    Zheng, Wenjin
    Li, Bo
    Chen, Wanyi
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT I, 2024, 14473 : 170 - 181
  • [42] EA-UNet Based Segmentation Method for OCT Image of Uterine Cavity
    Xiao, Zhang
    Du, Meng
    Liu, Junjie
    Sun, Erjie
    Zhang, Jinke
    Gong, Xiaojing
    Chen, Zhiyi
    PHOTONICS, 2023, 10 (01)
  • [43] MLFA-UNet: A multi-level feature assembly UNet for medical image segmentation
    Garbaz, Anass
    Oukdacha, Yassine
    Charfi, Said
    El Ansari, Mohamed
    Koutti, Lahcen
    Salihoun, Mouna
    METHODS, 2024, 232 : 52 - 64
  • [44] VM-UNET-V2: Rethinking Vision Mamba UNet for Medical Image Segmentation
    Zhang, Mingya
    Yu, Yue
    Jin, Sun
    Gu, Limei
    Ling, Tingsheng
    Tao, Xianping
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 335 - 346
  • [45] Segmentation of Lung Nodules Using Improved 3D-UNet Neural Network
    Xiao, Zhitao
    Liu, Bowen
    Geng, Lei
    Zhang, Fang
    Liu, Yanbei
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 15
  • [46] DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation
    Shen, Longfeng
    Wang, Qiong
    Zhang, Yingjie
    Qin, Fenglan
    Jin, Hengjun
    Zhao, Wei
    MEDICINE, 2023, 102 (39) : E35328
  • [47] Generalization ability analysis of digital rock image segmentation based on Unet++ network
    Zhao J.
    Cai J.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2024, 48 (02): : 118 - 125
  • [48] An Efficient and Rapid Medical Image Segmentation Network
    Su, Diwei
    Luo, Jianxu
    Fei, Cheng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 2979 - 2990
  • [49] A Medical Image Segmentation Network with Boundary Enhancement
    Sun Junmei
    Ge Qingqing
    Li Xiumei
    Zhao Baoqi
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (05) : 1643 - 1652
  • [50] MCNMF-Unet: a mixture Conv-MLP network with multi-scale features fusion Unet for medical image segmentation
    Yuan, Lei
    Song, Jianhua
    Fan, Yazhuo
    PEERJ COMPUTER SCIENCE, 2024, 10