A Medical Image Segmentation Method Based on Improved UNet 3+ Network

被引:29
|
作者
Xu, Yang [1 ]
Hou, Shike [1 ]
Wang, Xiangyu [2 ]
Li, Duo [1 ]
Lu, Lu [1 ]
机构
[1] Tianjin Univ, Inst Disaster & Emergency Med, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China
关键词
medical image segmentation; deep learning; UNet network; multi-scale skip connections; attention mechanism; COMPUTER-AIDED DIAGNOSIS;
D O I
10.3390/diagnostics13030576
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In recent years, segmentation details and computing efficiency have become more important in medical image segmentation for clinical applications. In deep learning, UNet based on a convolutional neural network is one of the most commonly used models. UNet 3+ was designed as a modified UNet by adopting the architecture of full-scale skip connections. However, full-scale feature fusion can result in excessively redundant computations. This study aimed to reduce the network parameters of UNet 3+ while further improving the feature extraction capability. First, to eliminate redundancy and improve computational efficiency, we prune the full-scale skip connections of UNet 3+. In addition, we use the attention module called Convolutional Block Attention Module (CBAM) to capture more essential features and thus improve the feature expression capabilities. The performance of the proposed model was validated by three different types of datasets: skin cancer segmentation, breast cancer segmentation, and lung segmentation. The parameters are reduced by about 36% and 18% compared to UNet and UNet 3+, respectively. The results show that the proposed method not only outperformed the comparison models in a variety of evaluation metrics but also achieved more accurate segmentation results. The proposed models have lower network parameters that enhance feature extraction and improve segmentation performance efficiently. Furthermore, the models have great potential for application in medical imaging computer-aided diagnosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Medical Image Segmentation Method with Triplet-Path Network
    Jiang Q.
    Ye H.
    Cao F.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (01): : 1 - 12
  • [22] NAS-Unet: Neural Architecture Search for Medical Image Segmentation
    Weng, Yu
    Zhou, Tianbao
    Li, Yujie
    Qiu, Xiaoyu
    IEEE ACCESS, 2019, 7 : 44247 - 44257
  • [23] Image Segmentation Method for Sweetgum Leaf Spots Based on an Improved DeeplabV3+Network
    Cai, Maodong
    Yi, Xiaomei
    Wang, Guoying
    Mo, Lufeng
    Wu, Peng
    Mwanza, Christine
    Kapula, Kasanda Ernest
    FORESTS, 2022, 13 (12):
  • [24] LIT-Unet: a lightweight and effective model for medical image segmentation
    Wang, Ru
    Kou, Qiqi
    Dou, Lina
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (04) : 878 - 887
  • [25] Retinal Vascular Image Segmentation Using Improved UNet Based on Residual Module
    Huang, Ko-Wei
    Yang, Yao-Ren
    Huang, Zih-Hao
    Liu, Yi-Yang
    Lee, Shih-Hsiung
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [26] A Densely Connected Network Based on U-Net for Medical Image Segmentation
    Yang, Zhenzhen
    Xu, Pengfei
    Yang, Yongpeng
    Bao, Bing-Kun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (03)
  • [27] PAMSNet: A medical image segmentation network based on spatial pyramid and attention mechanism
    Feng, Yuncong
    Zhu, Xiaoyan
    Zhang, Xiaoli
    Li, Yang
    Lu, Huimin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 94
  • [28] Ultrasonic image segmentation method based on DRA-UNet model
    Wang L.
    Guo X.
    Wang Y.
    Li B.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52 (05): : 83 - 89
  • [29] An Enhanced Feature Extraction Network for Medical Image Segmentation
    Gao, Yan
    Che, Xiangjiu
    Xu, Huan
    Bie, Mei
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [30] DAUNet: A deformable aggregation UNet for multi-organ 3D medical image segmentation
    Liu, Qinghao
    Liu, Min
    Zhu, Yuehao
    Liu, Licheng
    Zhang, Zhe
    Wang, Yaonan
    PATTERN RECOGNITION LETTERS, 2025, 191 : 58 - 65