共 50 条
Synergism of Fe and Al salts for the coagulation of dissolved organic matter: Structural developments of Fe/Al-organic matter associations
被引:8
作者:
Chen, Kai-Yue
[1
,2
]
Liu, Yu-Ting
[2
,3
]
Hung, Jui-Ting
[4
]
Hsieh, Yi-Cheng
[5
]
Tzou, Yu-Min
[2
,3
,6
]
机构:
[1] MingDao Univ, Dept Smart & Qual Agr, Changhua 523008, Taiwan
[2] Natl Chung Hsing Univ, Dept Soil & Environm Sci, 145 Xingda Rd, Taichung 402204, Taiwan
[3] Natl Chung Hsing Univ, Innovat & Dev Ctr Sustainable Agr, 145 Xingda Rd, Taichung 402204, Taiwan
[4] Natl Taitung Jr Coll, Dept Hort & Landscape Architecture, Taitung 95045, Taiwan
[5] Texas A&M Univ Syst, Off Texas State Chemist, Texas A&M AgriLife Res, College Stn, TX 77843 USA
[6] Xingda Rd, Taichung 402204, Taiwan
来源:
关键词:
C stabilization;
Fe;
Al ratios;
Al;
DOM-coprecipitates;
HUMIC-ACID;
FERRIHYDRITE;
COPRECIPITATION;
ALUMINUM;
FRACTIONATION;
PERFORMANCE;
HYDROLYSIS;
ADSORPTION;
STABILITY;
COLLOIDS;
D O I:
10.1016/j.chemosphere.2023.137737
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Dissolved organic matter (DOM) is distributed ubiquitously in water bodies. Ferric ions can flocculate DOM to form stable coprecipitates; however, Al(III) may alter the structures and stability of Fe-DOM coprecipitates. This study aimed to examine the coprecipitation of Fe, Al, and DOM as well as structural developments of Fe-DOM coprecipitates in relation to changes in Fe/Al ratios and pHs. The results showed that the derived Fe/Al/ DOM-coprecipitates could be classified into three categories: (1) at pH 3.0 and 4.5, the corner-sharing FeO6 octahedra associated with Fe-C bonds with Fe/(Fe + Al) ratios >= 0.5; (2) the Fe-C bonds along with single Fe octahedra having Fe/(Fe + Al) ratios of 0.25; (3) at pH 6.0, the ferrihydrite-like Fe domains associated with Fe-C bonds with Fe/(Fe + Al) ratios >= 0.5. At pH 3.0, the Fe and C stability of the coprecipitates increased with increasing Al proportions; nonetheless, pure Al-DOM coprecipitates were unstable even if they exhibited the maximum ability for DOM removal. The associations of Al-DOM complexes and/or DOM-adsorbed Al domains with external surfaces of Fe domain or Fe-DOM coprecipitates may stabilize DOM, leading to lower C solubilization at pH 4.5. Although the preferential formation of Fe/Al hydroxides decreased Fe/Al solubilization at pH 6.0, adsorption instead of coprecipitation of DOM with Fe/Al hydroxides may decrease C stabilization in the coprecipitates. Aluminum cations inhibit DOM releases from Fe/Al/DOM-coprecipitates, promoting the treatment and reuse efficiencies of wastewater and resolving water shortages. This study demonstrates that Al and solution pH greatly affect the structural changes of Fe-DOM coprecipitates and indirectly control the dynamics of Fe, Al, and C concentrations in water.
引用
收藏
页数:8
相关论文
共 50 条