On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions

被引:5
作者
Wannalookkhee, Fongchan [1 ]
Nonlaopon, Kamsing [1 ]
Sarikaya, Mehmet Zeki [2 ]
Budak, Huseyin [2 ]
Ali, Muhammad Aamir [3 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
[3] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
关键词
Hermite-Hadamard inequality; Convex function; Coordinated convex function; q-derivative; q-integral; q-calculus; MIDPOINT TYPE INEQUALITIES; HADAMARD INEQUALITY;
D O I
10.1186/s13660-023-02917-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish several new inequalities for q-differentiable coordinated convex functions that are related to the right side of Hermite-Hadamard inequalities for coordinated convex functions. We also show that the inequalities proved in this paper generalize the results given in earlier works. Moreover, we give some examples in order to demonstrate our main results.
引用
收藏
页数:25
相关论文
共 30 条
  • [1] Ali M.A., SOME NEW TRAPEZOIDAL
  • [2] Ali M.A., NEW VERSION Q HERMIT
  • [3] Ali M.A., 2021, SYMMETRY, V14
  • [4] Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables
    Ali, Muhammad Aamir
    Chu, Yu-Ming
    Budak, Hueseyin
    Akkurt, Abdullah
    Yildirim, Hueseyin
    Zahid, Manzoor Ahmed
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [5] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203
  • [6] Annyby H.M., 2012, Q FRACTIONAL CALCULU
  • [7] Variational q-calculus
    Bangerezako, G
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) : 650 - 665
  • [8] On q-Hermite-Hadamard inequalities for general convex functions
    Bermudo, S.
    Korus, P.
    Napoles Valdes, J. E.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 364 - 374
  • [9] Quantum Ostrowski-type integral inequalities for functions of two variables
    Budak, Huseyin
    Ali, Muhammad Aamir
    Tunc, Tuba
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5857 - 5872
  • [10] Budak Hüseyin, 2021, Proyecciones (Antofagasta), V40, P199, DOI 10.22199/issn.0717-6279-2021-01-0013