Polarization-Entangled Photon Pairs from Warm Atomic Ensemble with Magnetic Background Noise

被引:5
作者
Bae, Jinhyuk [1 ]
Park, Jiho [1 ]
Yu, Ye Jin [1 ]
Noh, Heung-Ryoul [2 ]
Moon, Han Seb [1 ]
机构
[1] Pusan Natl Univ, Dept Phys, Pusan 46241, Geumjeong Gu, South Korea
[2] Chonnam Natl Univ, Dept Phys, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
collective two-photon coherence; polarization-entangled photons; quantization axis; warm atomic ensemble; EXPERIMENTAL REALIZATION; STIMULATED-EMISSION; QUANTUM; GENERATION; INTENSITY;
D O I
10.1002/qute.202200118
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atomic ensembles are important quantum resources for the generation, manipulation, and quantum memory of entangled photons. In photonic quantum information based on atom-photon interactions, high-quality entangled-photon-pair sources are essential for realizing quantum information networks consisting of channels to connect the nodes through atomic ensembles. Here, a proof-of-concept for controlling polarization-entangled photon-pair sources from atomic ensembles by an external magnetic field under a magnetic noise environment is demonstrated. In the unshielded magnetic field, the polarization entangled state of the photon pair could be optimized to the target state by adjusting the magnetic field in an atomic vapor cell. The polarization-interference fringe, Bell's inequality value, quantum state tomography, and Hong-Ou-Mandel interference of the polarization entangled photon pairs from the cascade-type 5S(1/2)-5P(3/2)-5D(5/2) transition of Rb-87 according to the direction of the external magnetic field. Accordingly, a magnetic field is found to be a promising means for controlling entangled two-qubit states based on atom-photon.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Entanglement Swapping with Photons Generated on Demand by a Quantum Dot [J].
Basset, F. Basso ;
Rota, M. B. ;
Schimpf, C. ;
Tedeschi, D. ;
Zeuner, K. D. ;
da Silva, S. F. Covre ;
Reindl, M. ;
Zwiller, V ;
Jons, K. D. ;
Rastelli, A. ;
Trotta, R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (16)
[2]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[3]   TIME-RESOLVED DUAL-BEAM 2-PHOTON INTERFERENCES WITH HIGH VISIBILITY [J].
BRENDEL, J ;
MOHLER, E ;
MARTIENSSEN, W .
PHYSICAL REVIEW LETTERS, 1991, 66 (09) :1142-1145
[4]   Pulsed energy-time enangled twin-photon source for quantum communication [J].
Brendel, J ;
Gisin, N ;
Tittel, W ;
Zbinden, H .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2594-2597
[5]   Quantum telecommunication based on atomic cascade transitions [J].
Chanelière, T ;
Matsukevich, DN ;
Jenkins, SD ;
Kennedy, TAB ;
Chapman, MS ;
Kuzmich, A .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[6]   Quantum sensing [J].
Degen, C. L. ;
Reinhard, F. ;
Cappellaro, P. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
[7]   Experimental realization of narrowband four-photon Greenberger-Horne-Zeilinger state in a single cold atomic ensemble [J].
Dong, Ming-Xin ;
Zhang, Wei ;
Hou, Zhi-Bo ;
Yu, Yi-Chen ;
Shi, Shuai ;
Ding, Dong-Sheng ;
Shi, Bao-Sen .
OPTICS LETTERS, 2017, 42 (22) :4691-4694
[8]   Two-color hyper-entangled photon pairs generation in a cold 85Rb atomic ensemble [J].
Dong, Ming-Xin ;
Zhang, Wei ;
Shi, Shuai ;
Wang, Kai ;
Zhou, Zhi-Yuan ;
Liu, Shi-Long ;
Ding, Dong-Sheng ;
Shi, Bao-Sen .
OPTICS EXPRESS, 2017, 25 (09) :10145-10152
[9]   Experimental observation of four-photon entanglement from parametric down-conversion [J].
Eibl, M ;
Gaertner, S ;
Bourennane, M ;
Kurtsiefer, C ;
Zukowski, M ;
Weinfurter, H .
PHYSICAL REVIEW LETTERS, 2003, 90 (20) :1-200403
[10]   Twisted photons: new quantum perspectives in high dimensions [J].
Erhard, Manuel ;
Fickler, Robert ;
Krenn, Mario ;
Zeilinger, Anton .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7 :17146-17146