Experimental Investigation on the Imbibition Behavior of Nanofluids in the Tight Oil and Gas Reservoir through the Application of Nuclear Magnetic Resonance Method

被引:3
|
作者
Li, Hui [1 ]
Wang, Can [1 ]
Li, Ben [1 ]
Wen, Xixia [1 ]
Li, Jianchuan [1 ]
Tian, Lu [1 ]
机构
[1] China Univ Petr, Unconvent Petr Res Inst, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
tight reservoir; static imbibition; nanofluid; nuclear magnetic resonance; SANDSTONE; RECOVERY; NANOPARTICLES; WATER;
D O I
10.3390/en16010454
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tight oil and gas resources are widely distributed and play an important role in the petroleum industry. Due to its nanoscale pore-throat characteristics, the capillary effect is remarkable, and spontaneous imbibition is very beneficial to the development of low-permeability reservoirs. In this study, the imbibition experiments of 2D nano blackcard, nanoemulsion, and water were carried out, respectively. The pore-throat fluid distribution characteristics before and after core imbibition were analyzed with nuclear magnetic resonance technology, and the enhanced oil recovery effects of 2D nano blackcard nanoemulsion, and water were comprehensively evaluated. The results show that the final recovery factors of cores soaked in 2D nano blackcard (0.005 omega t%) and nanoemulsion (0.02 omega t%) or imbibed in water are 32.29%, 26.05%, and 7.19%, respectively. It can be found that 2D nano blackcard is the fluid with the best imbibition effect. In this work, a new type of 2D nano blackcard was proposed and identified as a functional imbibition fluid for enhanced oil recovery in tight reservoirs, providing a practical reference for the effective development of tight, low-permeability oil and gas reservoirs.
引用
收藏
页数:13
相关论文
共 29 条
  • [1] Experimental investigation of spontaneous imbibition process of nanofluid in ultralow permeable reservoir with nuclear magnetic resonance
    Zhou, Hongda
    Zhang, Qingsheng
    Dai, Caili
    Li, Yuyang
    Lv, Wenjiao
    Wu, Yining
    Cheng, Rui
    Zhao, Mingwei
    CHEMICAL ENGINEERING SCIENCE, 2019, 201 : 212 - 221
  • [2] Study on Wettability and Static Imbibition Law of Tight Reservoir Based on Nuclear Magnetic Resonance Test
    Chen, Shilin
    Liu, Xuewei
    Xiong, Shengchun
    Liu, Guozhong
    Wang, Xiangyang
    CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, 2023, 59 (02) : 375 - 382
  • [3] Study on Wettability and Static Imbibition Law of Tight Reservoir Based on Nuclear Magnetic Resonance Test
    Chen Shilin
    Liu Xuewei
    Xiong Shengchun
    Liu Guozhong
    Wang Xiangyang
    Chemistry and Technology of Fuels and Oils, 2023, 59 : 375 - 382
  • [4] Investigation of the Combination Mechanism of Spontaneous Imbibition and Water Flooding in Tight Oil Reservoirs Based on Nuclear Magnetic Resonance
    Tao, Lei
    Wang, Longlong
    Bai, Jiajia
    Zhang, Na
    Shi, Wenyang
    Zhu, Qingjie
    Xu, Zhengxiao
    Wang, Guoqing
    ENERGIES, 2024, 17 (03)
  • [5] Experimental investigations of fracturing fluid flowback and retention under forced imbibition in fossil hydrogen energy development of tight oil based on nuclear magnetic resonance
    Xu, Guoqing
    Jiang, Yun
    Shi, Yang
    Han, Yujiao
    Wang, Mingxian
    Zeng, XingHang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (24) : 13256 - 13271
  • [6] Nuclear Magnetic Resonance Measurement of Oil and Water Distributions in Spontaneous Imbibition Process in Tight Oil Reservoirs
    Nie, Xiangrong
    Chen, Junbin
    ENERGIES, 2018, 11 (11)
  • [7] Simulation and experimental investigation of dielectric and magnetic nanofluids in reduction of oil viscosity in reservoir sandstone
    Sikiru, Surajudeen
    Soleimani, Hassan
    Shafie, Afza
    Kozlowski, Gregory
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [8] Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir
    Wei, Jianguang
    Fu, Lanqing
    Zhao, Guozhong
    Zhao, Xiaoqing
    Liu, Xinrong
    Wang, Anlun
    Wang, Yan
    Cao, Sheng
    Jin, Yuhan
    Yang, Fengrui
    Liu, Tianyang
    Yang, Ying
    ENERGY, 2023, 282
  • [9] Study of the Imbibition Behavior of Hydrophilic Tight Sandstone Reservoirs Based on Nuclear Magnetic Resonance
    Ren, Xiaoxia
    Li, Aifen
    Wang, Guijuan
    He, Bingqing
    Fu, Shuaishi
    ENERGY & FUELS, 2018, 32 (07) : 7762 - 7772
  • [10] Influence of Overburden Pressure on Imbibition Behavior in Tight Sandstones Using Nuclear Magnetic Resonance Technique
    Meng, Mianmo
    Li, Longlong
    Yuan, Bao
    Wang, Qianyou
    Sun, Xiaohui
    Zhang, Ye
    Li, Dahua
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (07):