Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect

被引:40
|
作者
Bi, Wenzhe [1 ]
Tian, Li [1 ]
Li, Chao [2 ]
Ma, Zhen [1 ]
Pan, Haiyang [2 ]
机构
[1] Shandong Univ, Sch Civil Engn, Jinan 250061, Peoples R China
[2] Dalian Univ Technol, Fac Infrastruct Engn, Dalian 116024, Peoples R China
关键词
Transmission tower-line system; JPD of wind speed and direction; Fragility analysis; Failure probability; Wind attack angle; line orientation; INDUCED FATIGUE; DIRECTION; DAMAGE; RELIABILITY; PERFORMANCE; SPEED; UNCERTAINTIES; DISTRIBUTIONS; SIMULATION; BUILDINGS;
D O I
10.1016/j.ress.2022.108875
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a comprehensive wind-induced performance evaluation framework for transmission tower -line systems (TTLSs) from both structural safety and normal operation dimensions, incorporating the joint effect of wind speed and direction, as well as the line orientation. Based on the field wind data recorded in Weifang, China during 1971-2020, the actual failure probability of a local TTLS is calculated considering the joint probability distribution (JPD) of wind speed and direction, and the optimal layout of the transmission line is provided. The results show that the developed QS copula model can not only account for the continuity and cyclicity of wind direction but also have a fine goodness-of-fit. The wind direction with a relatively lower occurrence probability does not necessarily yield smaller failure probability of the TTLS, thereby the JPD of wind speed and direction should be incorporated to achieve reliable performance assessment. For the failure analysis with respect to structural damage, the most favorable layout of the exemplar TTLS is the orientation of 265 degrees; while the most advantageous layout is the orientation of 38 degrees in terms of flashover risk. The presented framework is conducive to performance assessment and optimization design of TTLSs subjected to wind hazards.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Study on the collapse failure of transmission tower-line system under downburst
    Bi W.-Z.
    Tian L.
    Gongcheng Lixue/Engineering Mechanics, 2022, 39 : 78 - 83
  • [32] Study on Wind Vibration Response and Coupling Effect of Transmission Tower-Line System Under Downburst
    Zhong, Yongli
    Liu, Yichen
    Li, Shun
    Yan, Zhitao
    Liu, Xinpeng
    IEEE ACCESS, 2024, 12 : 100120 - 100133
  • [33] Fragility of transmission tower-line system subjected to concurrent wind and ice accretion
    Xiao, M. Y.
    Zhou, W. X.
    Bitsuamlak, G.
    Hong, H. P.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 222
  • [34] Fragility Analysis of Wind-Induced Collapse of a Transmission Tower Considering Corrosion
    Liu, Chuncheng
    Yan, Zhao
    BUILDINGS, 2022, 12 (10)
  • [35] Wind tunnel tests and dynamic analysis of wind-induced response of a transmission tower on a hill
    Guo, Jian
    Xiao, Changliang
    Li, Jiantao
    ADVANCES IN STRUCTURAL ENGINEERING, 2021, 24 (15) : 3594 - 3606
  • [36] A review of the transmission tower-line system performance under typhoon in wind tunnel test
    Li, Xianying
    Yao, Yu
    Wu, Hongtao
    Zhao, Biao
    Chen, Bin
    Yi, Tao
    WIND AND STRUCTURES, 2019, 29 (02) : 87 - 98
  • [37] Parametric Study of Tuned Mass Dampers for Long Span Transmission Tower-Line System under Wind Loads
    Tian, Li
    Zeng, Yujie
    SHOCK AND VIBRATION, 2016, 2016
  • [38] Fundamental Theoretical Study on Antiseismic and Wind-Proof of Transmission Tower-Line System
    Li, H. N.
    Bai, H. F.
    Ren, Y. M.
    PROCEEDINGS OF THE 2ND INTERNATIONAL FORUM ON ADVANCES IN STRUCTURAL ENGINEERING - 2008: STRUCTURAL DISASTER PREVENTION, MONITORING AND CONTROL, 2008, : 100 - +
  • [39] Collapse failure analysis and fragility analysis of a transmission tower-line system subjected to the multidimensional ground motion of different input directions
    Tian, Li
    Yang, Meng
    Liu, Shiyuan
    Liu, Juncai
    Gao, Guodong
    Yang, Zeying
    STRUCTURES, 2023, 48 : 1018 - 1028
  • [40] Advances in calculation theory of wind and rain loads and failure estimation for transmission tower-line systems
    Fu X.
    Li H.
    Li G.
    Xu X.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2023, 44 (03): : 198 - 212