Coking coal futures price index forecasting with the neural network

被引:36
|
作者
Xu, Xiaojie [1 ]
Zhang, Yun [1 ]
机构
[1] North Carolina State Univ, Raleigh, NC 27695 USA
关键词
Coking coal; Price forecasting; Time series; Neural network; Machine learning; US CORN CASH; CONTEMPORANEOUS CAUSAL ORDERINGS; TIME-SERIES; STOCK INDEX; CHINA; ALGORITHM; COINTEGRATION; CONSUMPTION; INVESTMENT; DYNAMICS;
D O I
10.1007/s13563-022-00311-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
Coking coal price forecasting is a significant issue for investors and policy makers. This study explores usefulness of the nonlinear autoregressive neural network for this forecasting problem in a dataset of daily closing prices of the coking coal futures traded in China Dalian Commodity Exchange during January 4, 2016-December 31, 2020. Through examining various model settings across the algorithm, delay, hidden neuron, and data splitting ratio, the model leading to generally accurate and stable performance is reached. Particularly, the model's inputs are the lagged coking coal futures prices and output is the 1-day ahead price forecast. The model is based on the two-layer feedforward network with six delays and two hidden neurons, which is trained through the Levenberg-Marquardt algorithm, and leads to relative root mean square errors of 1.84%, 1.85%, and 1.84% for the training, validation, and testing phases, respectively. Usefulness of the machine learning technique for the price forecasting problem of the coking coal price is illustrated. Results here might be used on a standalone basis as technical forecasts or combined with fundamental forecasts to form perspectives of price trends and perform policy analysis.
引用
收藏
页码:349 / 359
页数:11
相关论文
共 50 条
  • [31] Forecasting volatility index by temporal convolutional neural network
    Shin, Ji Won
    Shin, Dong Wan
    KOREAN JOURNAL OF APPLIED STATISTICS, 2023, 36 (02) : 129 - 139
  • [32] Load Forecasting Based on LSTM Neural Network and Applicable to Loads of “Replacement of Coal with Electricity”
    Zexi Chen
    Delong Zhang
    Haoran Jiang
    Longze Wang
    Yongcong Chen
    Yang Xiao
    Jinxin Liu
    Yan Zhang
    Meicheng Li
    Journal of Electrical Engineering & Technology, 2021, 16 : 2333 - 2342
  • [33] A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting
    Boubaker, Heni
    Canarella, Giorgio
    Gupta, Rangan
    Miller, Stephen M.
    COMPUTATIONAL ECONOMICS, 2023, 62 (04) : 1801 - 1843
  • [34] Load Forecasting Based on LSTM Neural Network and Applicable to Loads of "Replacement of Coal with Electricity"
    Chen, Zexi
    Zhang, Delong
    Jiang, Haoran
    Wang, Longze
    Chen, Yongcong
    Xiao, Yang
    Liu, Jinxin
    Zhang, Yan
    Li, Meicheng
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2021, 16 (05) : 2333 - 2342
  • [35] Price Formation in Spot and Futures Markets: Exchange Traded Funds vs. Index Futures
    Schlusche, Bernd
    JOURNAL OF DERIVATIVES, 2009, 17 (02): : 26 - 40
  • [36] Spectral temporal graph neural network for multivariate agricultural price forecasting
    Ozden, Cevher
    Bulut, Mutlu
    CIENCIA RURAL, 2024, 54 (01):
  • [37] Forecasting price in a new hybrid neural network model with machine learning
    Zhu, Rui
    Zhong, Guang-Yan
    Li, Jiang-Cheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [38] Application of Process Neural Network on Consumer Price Index Prediction
    Ge, Li
    Yin, Guisheng
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL II, 2010, : 371 - 373
  • [39] Application of Process Neural Network on Consumer Price Index Prediction
    Ge, Li
    Yin, Guisheng
    AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, 2012, 137 : 427 - +
  • [40] Electricity price forecasting using Artificial Neural Network
    Ranjbar, M.
    Soleymani, S.
    Sadati, N.
    Ranjbar, A. M.
    2006 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONIC, DRIVES AND ENERGY SYSTEMS, VOLS 1 AND 2, 2006, : 931 - +