Conservative Policy Construction Using Variational Autoencoders for Logged Data With Missing Values

被引:4
|
作者
Abroshan, Mahed [1 ]
Yip, Kai Hou [2 ]
Tekin, Cem [3 ]
van der Schaar, Mihaela [4 ,5 ]
机构
[1] Alan Turing Inst, London NW1 2DB, England
[2] UCL, London WC1E 6BT, England
[3] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB2 1TN, England
[5] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
基金
英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
Missing values; observational data; policy construction; variational autoencoder; PROPENSITY SCORE; INFERENCE; IMPUTATION;
D O I
10.1109/TNNLS.2021.3136385
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. First, learning through online exploration is not possible due to the critical nature of such applications. Therefore, we need to resort to observational datasets with no counterfactuals. Second, such datasets are usually imperfect, additionally cursed with missing values in the attributes of features. In this article, we consider the problem of constructing personalized policies using logged data when there are missing values in the attributes of features in both training and test data. The goal is to recommend an action (treatment) when (X) over tilde, a degraded version of X with missing values, is observed. We consider three strategies for dealing with missingness. In particular, we introduce the conservative strategy where the policy is designed to safely handle the uncertainty due to missingness. In order to implement this strategy, we need to estimate posterior distribution p(X vertical bar(X) over tilde) and use a variational autoencoder to achieve this. In particular, our method is based on partial variational autoencoders (PVAEs) that are designed to capture the underlying structure of features with missing values.
引用
收藏
页码:6368 / 6378
页数:11
相关论文
共 50 条
  • [41] Conditional variational autoencoders for probabilistic wind turbine blade fatigue estimation using Supervisory, Control, and Data Acquisition data
    Mylonas, Charilaos
    Abdallah, Imad
    Chatzi, Eleni
    WIND ENERGY, 2021, 24 (10) : 1122 - 1139
  • [42] Disease Progression Score Estimation From Multimodal Imaging and MicroRNA Data Using Supervised Variational Autoencoders
    Kmetzsch, Virgilio
    Becker, Emmanuelle
    Saracino, Dario
    Rinaldi, Daisy
    Camuzat, Agnes
    Le Ber, Isabelle
    Colliot, Olivier
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 6024 - 6035
  • [43] Missing data imputation and sensor self-validation towards a sustainable operation of wastewater treatment plants via deep variational residual autoencoders
    Ba-Alawi, Abdulrahman H.
    Loy-Benitez, Jorge
    Kim, SangYun
    Yoo, ChangKyoo
    CHEMOSPHERE, 2022, 288
  • [44] Multiple Imputation for Missing Values in Homicide Incident Data: An Evaluation Using Unique Test Data
    Roberts, John M., Jr.
    Roberts, Aki
    Wadsworth, Tim
    HOMICIDE STUDIES, 2018, 22 (04) : 391 - 409
  • [45] Identification of Gene Regulatory Networks Using Variational Bayesian Inference in the Presence of Missing Data
    Liu, Qie
    Li, Junhao
    Dong, Mingyu
    Liu, Min
    Chai, Yi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (01) : 399 - 409
  • [46] Detection of Bad Data and Estimation of Missing Parameter Values Using System Synergism
    Khond, Sudarshan R.
    Kale, Vijay S.
    Ballal, Makarand Sudhakar
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (05) : 5646 - 5658
  • [47] Visually Exploring Missing Values in Multivariable Data Using a Graphical User Interface
    Cheng, Xiaoyue
    Cook, Dianne
    Hofmann, Heike
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 68 (06): : 1 - 23
  • [48] Dealing with Zeros and Missing Values in Compositional Data Sets Using Nonparametric Imputation
    J. A. Martín-Fernández
    C. Barceló-Vidal
    V. Pawlowsky-Glahn
    Mathematical Geology, 2003, 35 : 253 - 278
  • [49] Estimation of missing values in air pollution data using single imputation techniques
    Norazian, Mohamed Noor
    Shukri, Yahaya Ahmad
    Azam, Ramli Nor
    Al Bakri, Abdullah Mohd Mustafa
    SCIENCEASIA, 2008, 34 (03): : 341 - 345
  • [50] Inference on missing values in genetic networks using high-throughput data
    Koukolikova-Nicola, Zdena
    Lio, Pietro
    Bagnoli, Franco
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2008, 4973 : 106 - +