Elliptical and rectangular solitons in media with competing cubic-quintic nonlinearities

被引:12
作者
Zeng, Liangwei [1 ,2 ]
Belic, Milivoj R. [3 ]
Mihalache, Dumitru [4 ]
Zhu, Xing [1 ]
机构
[1] Guangzhou Maritime Univ, Dept Basic Courses, Guangzhou 510725, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Texas A&M Univ Qatar, Doha 23874, Qatar
[4] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
基金
中国国家自然科学基金;
关键词
Optical solitons; Cubic-quintic nonlinearity; Non-circularly-symmetric solitons; Transformation of solitons; MATTER-WAVE MEDIA; GAP SOLITONS; SELECTION; DYNAMICS; COLLAPSE;
D O I
10.1016/j.chaos.2024.114645
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate two new types of non -circularly -symmetric solitons, the elliptical and rectangular solitons, which can be sustained by the cubic-quintic nonlinearity in the nonlinear Schrodinger equation with a linear potential well. The characteristics of these solitons are investigated in some detail. Notably, the elliptical and circular solitons can transform into each other, and similarly the rectangular and square solitons can transform into each other. Interestingly, we find that elliptical and rectangular solitons can also transform into each other-a phenomenon not readily seen among different types of solitons. In addition, the rotation of elliptical and rectangular solitons is displayed as well. Finally, we find that stable vortex modes of elliptical and rectangular solitons can be also supported by our model.
引用
收藏
页数:5
相关论文
共 53 条
[21]   DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :763-915
[22]   Nonlinear waves in PT-symmetric systems [J].
Konotop, Vladimir V. ;
Yang, Jianke ;
Zezyulin, Dmitry A. .
REVIEWS OF MODERN PHYSICS, 2016, 88 (03)
[23]   Bifurcations of solitons and their stability [J].
Kuznetsov, E. A. ;
Dias, F. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 507 (2-3) :43-105
[24]   Models of few optical cycle solitons beyond the slowly varying envelope approximation [J].
Leblond, H. ;
Mihalache, D. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 523 (02) :61-126
[25]   Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity [J].
Li, Pengfei ;
Malomed, Boris A. ;
Mihalache, Dumitru .
CHAOS SOLITONS & FRACTALS, 2020, 137
[26]   Optical nondegenerate solitons in a birefringent fiber with a 35 degree elliptical angle [J].
Liu, Fei-Yan ;
Triki, Houria ;
Zhou, Qin .
OPTICS EXPRESS, 2024, 32 (02) :2746-2765
[27]   Multidimensional dissipative solitons and solitary vortices [J].
Malomed, B. A. .
CHAOS SOLITONS & FRACTALS, 2022, 163
[28]   Spatiotemporal optical solitons [J].
Malomed, BA ;
Mihalache, D ;
Wise, F ;
Torner, L .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (05) :R53-R72
[29]  
Malomed BA., 2022, Multidimensional Solitons
[30]   Optical Solitons and Vortices in Fractional Media: A Mini-Review of Recent Results [J].
Malomed, Boris A. .
PHOTONICS, 2021, 8 (09)