Elliptical and rectangular solitons in media with competing cubic-quintic nonlinearities

被引:13
作者
Zeng, Liangwei [1 ,2 ]
Belic, Milivoj R. [3 ]
Mihalache, Dumitru [4 ]
Zhu, Xing [1 ]
机构
[1] Guangzhou Maritime Univ, Dept Basic Courses, Guangzhou 510725, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Texas A&M Univ Qatar, Doha 23874, Qatar
[4] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
基金
中国国家自然科学基金;
关键词
Optical solitons; Cubic-quintic nonlinearity; Non-circularly-symmetric solitons; Transformation of solitons; MATTER-WAVE MEDIA; GAP SOLITONS; SELECTION; DYNAMICS; COLLAPSE;
D O I
10.1016/j.chaos.2024.114645
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate two new types of non -circularly -symmetric solitons, the elliptical and rectangular solitons, which can be sustained by the cubic-quintic nonlinearity in the nonlinear Schrodinger equation with a linear potential well. The characteristics of these solitons are investigated in some detail. Notably, the elliptical and circular solitons can transform into each other, and similarly the rectangular and square solitons can transform into each other. Interestingly, we find that elliptical and rectangular solitons can also transform into each other-a phenomenon not readily seen among different types of solitons. In addition, the rotation of elliptical and rectangular solitons is displayed as well. Finally, we find that stable vortex modes of elliptical and rectangular solitons can be also supported by our model.
引用
收藏
页数:5
相关论文
共 53 条
[1]   Soliton stability versus collapse [J].
Bergé, L .
PHYSICAL REVIEW E, 2000, 62 (03) :R3071-R3074
[2]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[3]   Interactions of three-dimensional solitons in the cubic-quintic model [J].
Burlak, Gennadiy ;
Malomed, Boris A. .
CHAOS, 2018, 28 (06)
[4]   Stability boundary and collisions of two-dimensional solitons in PT-symmetric couplers with the cubic-quintic nonlinearity [J].
Burlak, Gennadiy ;
Malomed, Boris A. .
PHYSICAL REVIEW E, 2013, 88 (06)
[5]   Controlled nonautonomous matter-wave solitons in spinor Bose-Einstein condensates with spatiotemporal modulation [J].
Ding, Cui-Cui ;
Zhou, Qin ;
Xu, Si-Liu ;
Sun, Yun-Zhou ;
Liu, Wen-Jun ;
Mihalache, Dumitru ;
Malomed, Boris A. .
CHAOS SOLITONS & FRACTALS, 2023, 169
[6]   Stable higher-charge vortex solitons in the cubic-quintic medium with a ring potential [J].
Dong, Liangwei ;
Fan, Mingjing ;
Malomed, Boris A. .
OPTICS LETTERS, 2023, 48 (18) :4817-4820
[7]   Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials [J].
Dong, Liangwei ;
Huang, Changming .
NONLINEAR DYNAMICS, 2019, 98 (02) :1019-1028
[8]   Creation of vortices by torque in multidimensional media with inhomogeneous defocusing nonlinearity [J].
Driben, Rodislav ;
Meier, Torsten ;
Malomed, Boris A. .
SCIENTIFIC REPORTS, 2015, 5
[9]   Soliton Gyroscopes in Media with Spatially Growing Repulsive Nonlinearity [J].
Driben, Rodislav ;
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Meier, Torsten ;
Torner, Lluis .
PHYSICAL REVIEW LETTERS, 2014, 112 (02)
[10]   Robust Two-Dimensional Spatial Solitons in Liquid Carbon Disulfide [J].
Falcao-Filho, Edilson L. ;
de Araujo, Cid B. ;
Boudebs, Georges ;
Leblond, Herve ;
Skarka, Vladimir .
PHYSICAL REVIEW LETTERS, 2013, 110 (01)