Comparative study on flexural performance of ultra-high performance concrete beams reinforced with steel rebar and steel plate

被引:6
|
作者
Yan, Banfu [1 ]
Chen, Qiuyan [1 ]
Qiu, Minghong [2 ,6 ]
Zhu, Yanping [3 ]
Tu, Bing [1 ]
Shao, Xudong [4 ,5 ]
机构
[1] Guangxi Univ, Sch Civil Engn & Architecture, Nanning, Peoples R China
[2] Univ Hong Kong, Dept Civil Engn, Hong Kong, Peoples R China
[3] Missouri Univ Sci & Technol, Civil Architectural & Environm Engn, Rolla, MO USA
[4] Hunan Univ, Key Lab Wind & Bridge Engn Hunan Prov, Changsha, Peoples R China
[5] Hunan Univ, Natl Key Lab Bridge Safety & Resilience, Changsha, Peoples R China
[6] Univ Hong Kong, Dept Civil Engn, Pokfulam, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
cracking behavior; flexural behavior; reinforcement patterns; steel plate; ultimate capacity; ultra-high performance concrete (UHPC); STRUCTURAL PERFORMANCE; BEHAVIOR; STRENGTH; GFRP;
D O I
10.1002/suco.202300145
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To enhance the mechanical and constructional performance of the ultra-high performance concrete (UHPC) beams, the steel plate placed at the bottom surface of the UHPC beam is utilized to replace the ordinary steel rebars. In this paper, four 3.2 m UHPC T-shaped beams with different reinforcement patterns of ordinary steel rebars and external steel plate were fabricated and comparatively tested under flexure loading. Their damage patterns, load versus deflection behavior, flexural capacity, load versus strain behavior, moment versus curvature behavior, stiffness, and crack development were investigated. The flexural experiments indicated that the external steel plate, positioned at the bottom surface of the UHPC members, could resolve the difficulty of installing ordinary steel rebars in slender UHPC components and improve its constructional performance. Compared with the inside steel rebar reinforcement, the employment of the steel plate at the bottom surface of the UHPC beam can effectively increase the distance from the neutral axis to the tensile reinforcement at the serviceability and ultimate states, thereby improving its flexural capacity and stiffness. Additionally, the configuration of the external steel plate was beneficial to reduce the tensile stress level of the tensile reinforcement and limit the opening of UHPC crack width, and thus their crack resistance can be effectively enhanced. Moreover, increasing the thickness of the steel plate or rebar ratio can also significantly improve the flexural capacity, stiffness, and cracking resistance of UHPC beams.
引用
收藏
页码:2536 / 2552
页数:17
相关论文
共 50 条
  • [41] Study on performance of prestressed concrete hollow slab beams reinforced by grouting with ultra-high performance concrete
    Zhang, Shouqi
    Du, Shizhao
    Ang, Yuan
    Lu, Zhenbao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2021, 15
  • [42] Impact Resistance of Reinforced Ultra-High-Performance Concrete Beams with Different Steel Fibers
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Yoon, Young-Soo
    ACI STRUCTURAL JOURNAL, 2017, 114 (01) : 113 - 124
  • [43] Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete
    Yang, Jian
    Chen, Baochun
    Nuti, Camillo
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 302
  • [44] Flexural strength of ultra-high performance concrete beams with stainless steel wire mesh: experimental and finite element analysis
    Liu, Long
    Wan, Songqiang
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (03) : 416 - 435
  • [45] Analysis on Flexural Performance of Prestressed Steel-Reinforced UHPC Beams
    Zhu, Ye
    Shi, Tianyu
    Zhu, Yanzhu
    Zhu, Zhiyu
    Wang, Kun
    BUILDINGS, 2024, 14 (12)
  • [46] Study on Flexural Performance of Concrete Beams Reinforced by Steel Fiber and Nano-SiO2 Materials
    Shi, Ke
    Zhang, Mengyue
    Zhang, Tao
    Xue, Ru
    Li, Pengfei
    Chen, Gang
    CRYSTALS, 2021, 11 (08)
  • [47] Strain-hardening effect on the flexural behavior of ultra-high-performance fiber-reinforced concrete beams with steel rebars
    Yoo, Doo-Yeol
    Soleimani-Dashtaki, Salman
    Oh, Taekgeun
    Chun, Booki
    Banthia, Nemkumar
    Lee, Seung-Jung
    Yoon, Young -Soo
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 17
  • [48] A comparative study of flexural and shear behavior of ultra-high-performance fiber-reinforced concrete beams
    Pourbaba, Masoud
    Sadaghian, Hamed
    Mirmiran, Amir
    ADVANCES IN STRUCTURAL ENGINEERING, 2019, 22 (07) : 1727 - 1738
  • [49] Comparative study on the effect of steel and polyoxymethylene fibers on the characteristics of Ultra-High Performance Concrete (UHPC)
    Yu Rui
    Liu Kangning
    Yin Tianyi
    Tang Liwen
    Ding Mengxi
    Shui Zhonghe
    CEMENT & CONCRETE COMPOSITES, 2022, 127
  • [50] Mesoscale study of steel fibre-reinforced ultra-high performance concrete under static and dynamic loads
    Su, Yu
    Li, Jun
    Wu, Chengqing
    Wu, Pengtao
    Tao, Ming
    Li, Xibing
    MATERIALS & DESIGN, 2017, 116 : 340 - 351