Maximum gravitational mass MTOV=2.25+0.08-0.07M⊙ inferred at about 3% precision with multimessenger data of neutron stars

被引:43
作者
Fan, Yi-Zhong [1 ,2 ]
Han, Ming-Zhe [1 ]
Jiang, Jin-Liang [3 ]
Shao, Dong-Sheng [1 ]
Tang, Shao-Peng [1 ]
机构
[1] Chinese Acad Sci, Key Lab Dark Matter & Space Astron, Purple Mt Observ, Nanjing 210023, Peoples R China
[2] Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Anhui, Peoples R China
[3] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
EQUATION-OF-STATE; CELESTIAL CAP PULSAR; MILLISECOND PULSAR; BINARY PULSAR; UNIVERSAL RELATIONS; ORBITAL DECAY; DENSE MATTER; SOUND SPEED; RAY BURST; SYSTEM;
D O I
10.1103/PhysRevD.109.043052
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The maximal gravitational mass of nonrotating neutron stars (MTOV) is one of the key parameters of compact objects and only loose bounds can be set based on the first principle. With reliable measurements of the masses and/or radii of the neutron stars, MTOV can be robustly inferred from either the mass distribution of these objects or the reconstruction of the equation of state of the very dense matter. For the first time we take the advantages of both two approaches to have a precise inference of MTOV = 2.25+0.08 -0.07M circle dot (68.3% credibility), with the updated neutron star mass measurement sample, the mass -tidal deformability data of GW170817, the mass -radius data of PSR J0030 + 0451 and PSR J0740 + 6620, as well as the theoretical information from the chiral effective theory and perturbative quantum chromodynamics (pQCD) at low- and very high-energy densities, respectively. This narrow credible range is benefited from the suppression of the high MTOV by the pQCD constraint and the exclusion of the low MTOV by the mass function. Three different EoS reconstruction methods are adopted separately, and the resulting MTOV and RTOV are found to be almost identical, where RTOV = 11.90+0.63 -0.60 km is the radius of the most massive nonrotating neutron star. This precisely evaluated MTOV suggests that the EoS of neutron star matter is just moderately stiff and the similar to 2.5-3M circle dot compact objects detected by the second -generation gravitational wave detectors are most likely the lightest black holes.
引用
收藏
页数:16
相关论文
共 123 条
[1]   GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4 M⊙ [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. .
ASTROPHYSICAL JOURNAL LETTERS, 2020, 892 (01)
[2]   Multi-messenger Observations of a Binary Neutron Star Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 848 (02)
[3]   GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (14)
[4]   GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run [J].
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, N. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Akutsu, T. ;
Albanesi, S. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, C. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Andrade, T. ;
Andres, N. ;
Andric, T. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, Koji ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arogeti, M. ;
Aronson, S. M. ;
Arun, K. G. .
PHYSICAL REVIEW X, 2023, 13 (04)
[5]   The Green Bank Northern Celestial Cap Pulsar Survey. VI. Discovery and Timing of PSR J1759+5036: A Double Neutron Star Binary Pulsar [J].
Agazie, G. Y. ;
Mingyar, M. G. ;
McLaughlin, M. A. ;
Swiggum, J. K. ;
Kaplan, D. L. ;
Blumer, H. ;
Chawla, P. ;
DeCesar, M. ;
Demorest, P. B. ;
Fiore, W. ;
Fonseca, E. ;
Gelfand, J. D. ;
Kaspi, V. M. ;
Kondratiev, V., I ;
LaRose, M. ;
van Leeuwen, J. ;
Levin, L. ;
Lewis, E. F. ;
Lynch, R. S. ;
McEwen, A. E. ;
Al Noori, H. ;
Parent, E. ;
Ransom, S. M. ;
Roberts, M. S. E. ;
Schmiedekamp, A. ;
Schmiedekamp, C. ;
Siemens, X. ;
Spiewak, R. ;
Stairs, I. H. ;
Surnis, M. .
ASTROPHYSICAL JOURNAL, 2021, 922 (01)
[6]   Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state [J].
Alsing, Justin ;
Silva, Hector O. ;
Berti, Emanuele .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (01) :1377-1391
[7]   On the Sound Speed in Neutron Stars [J].
Altiparmak, Sinan ;
Ecker, Christian ;
Rezzolla, Luciano .
ASTROPHYSICAL JOURNAL LETTERS, 2022, 939 (02)
[8]   A Fourier Domain "Jerk" Search for Binary Pulsars [J].
Andersen, Bridget C. ;
Ransom, Scott M. .
ASTROPHYSICAL JOURNAL LETTERS, 2018, 863 (01)
[9]   Evidence for quark-matter cores in massive neutron stars [J].
Annala, Eemeli ;
Gorda, Tyler ;
Kurkela, Aleksi ;
Nattila, Joonas ;
Vuorinen, Aleksi .
NATURE PHYSICS, 2020, 16 (09) :907-+
[10]   The relativistic pulsar-white dwarf binary PSR J1738+0333-I. Mass determination and evolutionary history [J].
Antoniadis, J. ;
van Kerkwijk, M. H. ;
Koester, D. ;
Freire, P. C. C. ;
Wex, N. ;
Tauris, T. M. ;
Kramer, M. ;
Bassa, C. G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 423 (04) :3316-3327