Rheumatoid arthritis classification and prediction by consistency-based deep learning using extremity MRI scans

被引:3
作者
Li, Yanli [1 ]
Hassanzadeh, Tahereh [1 ]
Shamonin, Denis P. [1 ]
Reijnierse, Monique [2 ]
van der Helm-van Mil, Annette H. M. [3 ]
Stoel, Berend C. [1 ]
机构
[1] Leiden Univ, Med Ctr, Dept Radiol, Div Image Proc, Leiden, Netherlands
[2] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[3] Leiden Univ, Med Ctr, Dept Pulmonol, Leiden, Netherlands
关键词
Rheumatoid arthritis; Deep learning; Self-supervised learning; Wrist MRI;
D O I
10.1016/j.bspc.2024.105990
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Predicting the development of rheumatoid arthritis (RA) in an early stage through magnetic resonance imaging (MRI) can initiate timely treatment and improve long-term patient outcomes. Although manual prediction is time-consuming and requires expert knowledge, automatic RA prediction has not been fully investigated. While standard models fail to achieve acceptable performance, we present a consistency-based deep learning framework to classify and predict RA automatically and precisely, including an output-standardized model, customized self-supervised pretraining and a loss function that is based on label consistency between original and augmented inputs. For training and evaluation, we used a database, containing 5945 MRI scans of carpal, metacarpophalangeal (MCP), and metatarsophalangeal (MTP) joints, from 2151 subjects obtained over a period of ten years. Four (three classification- and one prediction-) tasks were defined to distinguish two patient groups (with recent-onset arthritis and clinically suspect arthralgia) from healthy controls and RA from other arthritis patients within the recent-onset arthritis group, and predict RA development in a period of two years within the clinically suspect arthralgia group. The proposed method was evaluated with the area under the receiver operating curve (AUROC) on a separate test set, achieving mean AUROCs of 83.6%, 83.3%, and 69.7% in the three classification tasks, and 67.8% in the prediction task. This proves the existence of early signs of RA in MRI and the potential of a consistency-based deep learning model to detect these early signs and predict RA.
引用
收藏
页数:12
相关论文
共 39 条
[1]   Automatic quantification of tenosynovitis on MRI of the wrist in patients with early arthritis: a feasibility study [J].
Aizenberg, Evgeni ;
Shamonin, Denis P. ;
Reijnierse, Monique ;
van der Helm-van Mil, Annette H. M. ;
Stoel, Berend C. .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4477-4484
[2]   Automatic quantification of bone marrow edema on MRI of the wrist in patients with early arthritis: A feasibility study [J].
Aizenberg, Evgeni ;
Roex, Edgar A. H. ;
Nieuwenhuis, Wouter P. ;
Mangnus, Lukas ;
van der Helm-van Mil, Annette H. M. ;
Reijnierse, Monique ;
Bloem, Johan L. ;
Lelieveldt, Boudewijn P. F. ;
Stoel, Berend C. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (02) :1127-1134
[3]   Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J].
Andersen, Jakob Kristian Holm ;
Pedersen, Jannik Skyttegaard ;
Laursen, Martin Sundahl ;
Holtz, Kathrine ;
Grauslund, Jakob ;
Savarimuthu, Thiusius Rajeeth ;
Just, Soren Andreas .
RMD OPEN, 2019, 5 (01)
[4]  
[Anonymous], 2017, CoRR
[5]   Rheumatoid Arthritis Diagnosis: Deep Learning vs. Humane [J].
Avramidis, George P. ;
Avramidou, Maria P. ;
Papakostas, George A. .
APPLIED SCIENCES-BASEL, 2022, 12 (01)
[6]   MRI in early rheumatoid arthritis: synovitis and bone marrow oedema are independent predictors of subsequent radiographic progression [J].
Boyesen, Pernille ;
Haavardsholm, Espen A. ;
Ostergaard, Mikkel ;
van der Heijde, Desiree ;
Sesseng, Solve ;
Kvien, Tore K. .
ANNALS OF THE RHEUMATIC DISEASES, 2011, 70 (03) :428-433
[7]  
Chattopadhyay A., 2018, P 2018 IEEE WINTER C, P839
[8]  
Chen T, 2020, PR MACH LEARN RES, V119
[9]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[10]  
Dosovitskiy A, 2021, INT C LEARN REPR ICL