Magnetic Resonance Imaging-Based Assessment of Pancreatic Fat Strongly Correlates With Histology-Based Assessment of Pancreas Composition

被引:3
作者
Kiemen, Ashley L. [1 ,2 ,3 ]
Dbouk, Mohamad [1 ,4 ]
Diwan, Elizabeth Abou [5 ]
Forjaz, Andre [2 ]
Dequiedt, Lucie [2 ]
Baghdadi, Azarakhsh [6 ]
Madani, Seyedeh Panid [6 ]
Grahn, Mia P. [2 ]
Jones, Craig [7 ,8 ]
Vedula, Swaroop [8 ]
Wu, PeiHsun [2 ]
Wirtz, Denis [1 ,2 ,3 ,9 ]
Kern, Scott [1 ,3 ,10 ]
Goggins, Michael [1 ,3 ]
Hruban, Ralph H. [1 ,3 ]
Kamel, Ihab R. [6 ]
Canto, Marcia Irene [3 ,10 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD USA
[2] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD USA
[3] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD USA
[4] Washington Univ, Dept Med, St Louis, MO USA
[5] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
[6] Johns Hopkins Univ, Sch Med, Div Radiol & Radiol Sci, Baltimore, MD USA
[7] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD USA
[8] Johns Hopkins Univ, Malone Ctr Engn Healthcare, Baltimore, MD USA
[9] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[10] Johns Hopkins Univ, Sch Med, Div Gastroenterol & Hepatol, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
deep learning; pancreatic cancer; MRI; fat; QUANTITATIVE ASSESSMENT; LIVER-DISEASE; STEATOSIS; FIBROSIS; QUANTIFICATION; OBESITY;
D O I
10.1097/MPA.0000000000002288
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objective The aim of the study is to assess the relationship between magnetic resonance imaging (MRI)-based estimation of pancreatic fat and histology-based measurement of pancreatic composition. Materials and Methods In this retrospective study, MRI was used to noninvasively estimate pancreatic fat content in preoperative images from high-risk individuals and disease controls having normal pancreata. A deep learning algorithm was used to label 11 tissue components at micron resolution in subsequent pancreatectomy histology. A linear model was used to determine correlation between histologic tissue composition and MRI fat estimation. Results Twenty-seven patients (mean age 64.0 +/- 12.0 years [standard deviation], 15 women) were evaluated. The fat content measured by MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat content ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively correlated with microanatomical composition of fat (r = 0.90, 0.83 to 0.95], P < 0.001); as well as with pancreatic cancer precursor (r = 0.65, P < 0.001); and collagen (r = 0.46, P < 0.001) content, and negatively correlated with pancreatic acinar (r = -0.85, P < 0.001) content. Conclusions Pancreatic fat content, measurable by MRI, correlates to acinar content, stromal content (fibrosis), and presence of neoplastic precursors of cancer.
引用
收藏
页码:e180 / e186
页数:7
相关论文
共 30 条
  • [1] Braxton AM, 2023, bioRxiv
  • [2] Brune K, 2006, AM J SURG PATHOL, V30, P1067
  • [3] Screening for early pancreatic neoplasia in high-risk individuals: A prospective controlled study
    Canto, Marcia Irene
    Goggins, Michael
    Hruban, Ralph H.
    Petersen, Gloria M.
    Giardiello, Francis M.
    Yeo, Charles
    Fishman, Elliott K.
    Brune, Kieran
    Axilbund, Jennifer
    Griffin, Constance
    Ali, Syed
    Richman, Jeffrey
    Jagannath, Sanjay
    Kantsevoy, Sergey V.
    Kalloo, Anthony N.
    [J]. CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2006, 4 (06) : 766 - 781
  • [4] Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance
    Canto, Marcia Irene
    Almario, Jose Alejandro
    Schulick, Richard D.
    Yeo, Charles J.
    Klein, Alison
    Blackford, Amanda
    Shin, Eun Ji
    Sanyal, Abanti
    Yenokyan, Gayane
    Lennon, Anne Marie
    Kamel, Ihab R.
    Fishman, Elliot K.
    Wolfgang, Christopher
    Weiss, Matthew
    Hruban, Ralph H.
    Goggins, Michael
    [J]. GASTROENTEROLOGY, 2018, 155 (03) : 740 - +
  • [5] Fatty Liver Disease: MR Imaging Techniques for the Detection and Quantification of Liver Steatosis
    Cassidy, Fiona Hughes
    Yokoo, Takeshi
    Aganovic, Lejla
    Hanna, Robert F.
    Bydder, Mark
    Middleton, Michael S.
    Hamilton, Gavin
    Chavez, Alyssa D.
    Schwimmer, Jeffrey B.
    Sirlin, Claude B.
    [J]. RADIOGRAPHICS, 2009, 29 (01) : 231 - 260
  • [6] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [7] Associated factors for a hyperechogenic pancreas on endoscopic ultrasound
    Choi, Cheol Woong
    Kim, Gwang Ha
    Kang, Dae Hwan
    Kim, Hyung Wook
    Kim, Dong Uk
    Heo, Jeong
    Song, Geun Am
    Park, Do Youn
    Kim, Suk
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2010, 16 (34) : 4329 - 4334
  • [8] The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival
    Dbouk, Mohamad
    Katona, Bryson W.
    Brand, Randall E.
    Chak, Amitabh
    Syngal, Sapna
    Farrell, James J.
    Kastrinos, Fay
    Stoffel, Elena M.
    Blackford, Amanda L.
    Rustgi, Anil K.
    Dudley, Beth
    Lee, Linda S.
    Chhoda, Ankit
    Kwon, Richard
    Ginsberg, Gregory G.
    Klein, Alison P.
    Kamel, Ihab
    Hruban, Ralph H.
    He, Jin
    Shin, Eun Ji
    Lennon, Anne Marie
    Canto, Marcia Irene
    Goggins, Michael
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (28) : 3257 - +
  • [9] Nonalcoholic fatty pancreas disease and Nonalcoholic fatty liver disease: more than ectopic fat
    Della Corte, C.
    Mosca, A.
    Majo, F.
    Lucidi, V.
    Panera, N.
    Giglioni, E.
    Monti, L.
    Stronati, L.
    Alisi, A.
    Nobili, V.
    [J]. CLINICAL ENDOCRINOLOGY, 2015, 83 (05) : 656 - 662
  • [10] Uncovering the spatial landscape of molecular interactions within the tumor microenvironment through latent spaces
    Deshpande, Atul
    Loth, Melanie
    Sidiropoulos, Dimitrios N.
    Zhang, Shuming
    Yuan, Long
    Bell, Alexander T. F.
    Zhu, Qingfeng
    Ho, Won Jin
    Santa-Maria, Cesar
    Gilkes, Daniele M.
    Williams, Stephen R.
    Uytingco, Cedric R.
    Chew, Jennifer
    Hartnett, Andrej
    Bent, Zachary W.
    Favorov, Alexander V.
    Popel, Aleksander S.
    Yarchoan, Mark
    Kiemen, Ashley
    Wu, Pei-Hsun
    Fujikura, Kohei
    Wirtz, Denis
    Wood, Laura D.
    Zheng, Lei
    Jaffee, Elizabeth M.
    Anders, Robert A.
    Danilova, Ludmila
    Stein-O'Brien, Genevieve
    Kagohara, Luciane T.
    Fertig, Elana J.
    [J]. CELL SYSTEMS, 2023, 14 (04) : 285 - +