Parallelizing Maximal Clique Enumeration on GPUs

被引:1
|
作者
Almasri, Mohammad [1 ]
Chang, Yen-Hsiang [1 ]
El Hajj, Izzat [3 ]
Nagi, Rakesh [2 ]
Xiong, Jinjun [4 ]
Hwu, Wen-mei [5 ]
机构
[1] Univ Illinois, ECE, Urbana, IL 61801 USA
[2] Univ Illinois, ISE, Urbana, IL 61801 USA
[3] Amer Univ Beirut, Dept Comp Sci, Beirut, Lebanon
[4] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
[5] Nvidia Corp, Santa Clara, CA USA
关键词
LARGE GRAPHS; EFFICIENT; ALGORITHM; DECOMPOSITION;
D O I
10.1109/PACT58117.2023.00022
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm. Prior works on parallelizing MCE on GPUs perform a breadth-first traversal of the tree, which has limited scalability because of the explosion in the number of tree nodes at deep levels. We propose to parallelize MCE on GPUs by performing depth-first traversal of independent subtrees in parallel. Since MCE suffers from high load imbalance and memory capacity requirements, we propose a worker list for dynamic load balancing, as well as partial induced subgraphs and a compact representation of excluded vertex sets to regulate memory consumption. Our evaluation shows that our GPU implementation on a single GPU outperforms the state-of-the-art parallel CPU implementation by a geometric mean of 4.9x (up to 16.7x), and scales efficiently to multiple GPUs. Our code has been open-sourced to enable further research on accelerating MCE.
引用
收藏
页码:162 / 175
页数:14
相关论文
共 50 条
  • [41] Index-based top kα-maximal-clique enumeration over uncertain graphs
    Jing Bai
    Junfeng Zhou
    Ming Du
    Ziyang Chen
    The Journal of Supercomputing, 2022, 78 : 19372 - 19400
  • [42] Maximum Clique Enumeration on the GPU
    Geil, Afton
    Porumbescu, Serban D.
    Owens, John D.
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW, 2023, : 234 - 244
  • [43] Index-based top k α-maximal-clique enumeration over uncertain graphs
    Bai, Jing
    Zhou, Junfeng
    Du, Ming
    Chen, Ziyang
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (17): : 19372 - 19400
  • [44] Parallelizing DNN Training on GPUs: Challenges and Opportunities
    Xu, Weizheng
    Zhang, Youtao
    Tang, Xulong
    WEB CONFERENCE 2021: COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2021), 2021, : 174 - 178
  • [45] Parallelizing Alternating Direction Implicit Solver on GPUs
    Wei, Zhangping
    Jang, Byunghyun
    Zhang, Yaoxin
    Jia, Yafei
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 389 - 398
  • [46] Fast, Nearly Optimal ISE Identification With I/O Serialization Through Maximal Clique Enumeration
    Verma, Ajay K.
    Brisk, Philip
    Ienne, Paolo
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2010, 29 (03) : 341 - 354
  • [47] Scalable temporal clique enumeration
    Zhu, Kaijie
    Fletcher, George
    Yakovets, Nikolay
    Papapetrou, Odysseas
    Wu, Yuqing
    SSTD '19 - PROCEEDINGS OF THE 16TH INTERNATIONAL SYMPOSIUM ON SPATIAL AND TEMPORAL DATABASES, 2019, : 120 - 129
  • [48] α-Persistent Temporal Clique Enumeration with an Application
    Pal, Bithika
    Kolay, Sudeshna
    Banerjee, Suman
    DATABASES THEORY AND APPLICATIONS, ADC 2024, 2025, 15449 : 359 - 371
  • [49] Maximum Clique Solver Using Bitsets on GPUs
    VanCompernolle, Matthew
    Barford, Lee
    Harris, Frederick, Jr.
    INFORMATION TECHNOLOGY: NEW GENERATIONS, 2016, 448 : 327 - 337
  • [50] Parallel K-clique Counting on GPUs
    Almasri, Mohammad
    El Hajj, Izzat
    Nagi, Rakesh
    Xiong, Jinjun
    Hwu, Wen-Mei
    PROCEEDINGS OF THE 36TH ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ICS 2022, 2022,