A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection

被引:17
|
作者
Liu, Xiaolan [1 ]
Shi, Hongyang [1 ]
Song, Feifei [1 ]
Yang, Weihong [1 ]
Yang, Bowen [1 ]
Ding, Dayong [1 ,2 ]
Liu, Zhong [1 ]
Hui, Lanfeng [1 ]
Zhang, Fengshan [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Light Ind Sci & Engn, Tianjin Key Lab Pulp & Paper, Tianjin 300457, Peoples R China
[2] Shandong Huatai Paper Co Ltd, Lab Comprehens Utilizat Paper Waste Shandong Prov, Dongying 257335, Peoples R China
[3] Shandong Yellow Triangle Biotechnol Ind Res Inst C, Dongying, Peoples R China
基金
中国博士后科学基金;
关键词
Hydrogel; Cellulose nanofiber; Anti-freezing; Strain sensor; ENERGY-STORAGE; PRESSURE SENSOR; CELLULOSE; FIBER; SUPERCAPACITOR; NANOPARTICLES; TRANSPARENT; NANOHYBRID;
D O I
10.1016/j.ijbiomac.2023.128800
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electro-conductive hydrogels emerge as a stretchable conductive materials with diverse applications in the synthesis of flexible strain sensors. However, the high-water content and low cross-links density cause them to be mechanically destroyed and freeze at subzero temperatures, limiting their practical applications. Herein, we report a one-pot strategy by co-incorporating cellulose nanofiber (CNF), Poly pyrrole (PPy) and glycerol with polyvinyl alcohol (PVA) to prepare hydrogel. The addition of PPy endowed the hydrogel with good conductivity (-0.034 S/m) compared to the no PPy@CNF group (-0.0095 S/m), the conductivity was increased by 257.9 %. The hydrogel exhibits comparable ionic conductivity at -18 degrees C as it does at room temperature. It's attributed to the glycerol as a cryoprotectant and the formation of hydrated [Zn(H2O)n]2+ ions via strong interaction between Zn2+ and water molecules. Moreover, the cellulose nanofiber intrinsically assembled into unique hierarchical structures allow for strong hydrogen bonds between adjacent cellulose and PPy polymer chains, greatly improve the mechanical strength (stress-0.65 MPa, strain-301 %) and excellent viscoelasticity (G'max - 82.7 KPa). This novel PPy@CNF-PVA hydrogel exhibits extremely high Gauge factor (GF) of 2.84 and shows excellent sensitivity, repeatability and stability. Therefore, the hydrogel can serve as reliable and stable strain sensor which shows excellent responsiveness in human activities monitoration.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Highly conductive and anti-freezing cellulose hydrogel for flexible sensors
    Shu, Lian
    Wang, Zhongguo
    Zhang, Xiong-Fei
    Yao, Jianfeng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 230
  • [2] Preparation and characterization of anti-freezing conductive organohydrogel based on carboxyl modified polyvinyl alcohol and polypyrrole
    Yang, Pengcheng
    Zhao, Yinghui
    Zhang, Junhua
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 170
  • [3] Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection
    Xu, Xuran
    Wu, Shuaining
    Cui, Jian
    Yang, Luyu
    Wu, Kai
    Chen, Xiao
    Sun, Dongping
    COMPOSITES PART B-ENGINEERING, 2021, 211 (211)
  • [4] Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, Anti-Freezing, and Non-Drying Strain Sensor
    Han, Songjia
    Liu, Chunrui
    Lin, Xiaoyun
    Zheng, Jiwen
    Wu, Jin
    Liu, Chuan
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (02) : 996 - 1005
  • [5] An anti-freezing and anti-drying nanocellulose hydrogel for human motion detection
    Li, Gaosheng
    Gao, Yujiao
    Sun, Chenyu
    Niu, Fukun
    Shi, Zhuqun
    Yang, Quanling
    Xiong, Chuanxi
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 683
  • [6] Anti-freezing, tough, and stretchable ionic conductive hydrogel with multi-crosslinked double-network for a flexible strain sensor
    Chen, Daiwei
    Bai, Huiyu
    Zhu, Haiyan
    Zhang, Shengwen
    Wang, Wei
    Dong, Weifu
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [7] A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring
    Gao, Yafei
    Peng, Junbo
    Zhou, Manhua
    Yang, Yanyu
    Wang, Xing
    Wang, Jianfeng
    Cao, Yanxia
    Wang, Wanjie
    Wu, Decheng
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (48) : 11010 - 11020
  • [8] HIGHLY DEFORMABLE AND TRANSPARENT TRIBOELECTRIC PHYSIOLOGICAL SENSOR BASED ON ANTI-FREEZING AND ANTI-DRYING IONIC CONDUCTIVE HYDROGEL
    Chen, Zhensheng
    Yu, Jiahao
    Xu, Mengfei
    Zeng, Haozhe
    Tao, Kai
    Wu, Zixuan
    Wu, Jin
    Miao, Jianmin
    Chang, Honglong
    Yuan, Weizheng
    2021 34TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2021), 2021, : 525 - 528
  • [9] Super Tough Anti-freezing and Antibacterial Hydrogel With Multi-crosslinked Network for Flexible Strain Sensor
    Liu, Huimin
    Guan, Shiqiang
    Wang, Pengwei
    Dong, Xufeng
    SMALL, 2025, 21 (08)
  • [10] Anti-Freezing and Ultrasensitive Zwitterionic Betaine Hydrogel-Based Strain Sensor for Motion Monitoring and Human-Machine Interaction
    Yin, Yanqi
    Xie, Rui
    Sun, Zewei
    Jiang, Tianzong
    Zhou, Bingchen
    Yu, Yan
    Ding, He
    Gai, Shili
    Yang, Piaoping
    NANO LETTERS, 2024, 24 (17) : 5351 - 5360