Computational prediction and experimental validation identify functionally conserved lncRNAs from zebrafish to human

被引:11
|
作者
Huang, Wenze [1 ,2 ,3 ,4 ]
Xiong, Tuanlin [1 ,2 ,3 ,4 ]
Zhao, Yuting [5 ,6 ]
Heng, Jian [7 ,8 ]
Han, Ge [1 ,2 ,3 ,4 ]
Wang, Pengfei [1 ,2 ,3 ,4 ]
Zhao, Zhihua [9 ]
Shi, Ming [5 ,6 ]
Li, Juan [9 ]
Wang, Jiazhen [5 ]
Wu, Yixia [5 ]
Liu, Feng [7 ,8 ,10 ,11 ]
Xi, Jianzhong Jeff [9 ]
Wang, Yangming [5 ]
Zhang, Qiangfeng Cliff [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Ctr Synthet & Syst Biol, Sch Life Sci, MOE Key Lab Bioinformat, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Beijing, Peoples R China
[3] Tsinghua Univ, Frontier Res Ctr Biol Struct, Sch Life Sci, Beijing, Peoples R China
[4] Tsinghua Peking Ctr Life Sci, Beijing, Peoples R China
[5] Peking Univ, Inst Mol Med, Coll Future Technol, Beijing, Peoples R China
[6] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[7] Chinese Acad Sci, Inst Zool, State Key Lab Membrane Biol, Beijing, Peoples R China
[8] Chinese Acad Sci, Inst Stem Cell & Regenerat, Beijing, Peoples R China
[9] Peking Univ, Coll Future Technol, Dept Biomed Engn, Beijing, Peoples R China
[10] Univ Chinese Acad Sci, Beijing, Peoples R China
[11] Shandong Univ, Sch Life Sci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
LONG NONCODING RNA; EMBRYONIC-DEVELOPMENT; EVOLUTION; GENE; EXPRESSION; CANCER; ELEMENTS; SCREENS; IDENTIFICATION; TRANSCRIPTOME;
D O I
10.1038/s41588-023-01620-7
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Functional studies of long noncoding RNAs (lncRNAs) have been hindered by the lack of methods to assess their evolution. Here we present lncRNA Homology Explorer (lncHOME), a computational pipeline that identifies a unique class of long noncoding RNAs (lncRNAs) with conserved genomic locations and patterns of RNA-binding protein (RBP) binding sites (coPARSE-lncRNAs). Remarkably, several hundred human coPARSE-lncRNAs can be evolutionarily traced to zebrafish. Using CRISPR-Cas12a knockout and rescue assays, we found that knocking out many human coPARSE-lncRNAs led to cell proliferation defects, which were subsequently rescued by predicted zebrafish homologs. Knocking down coPARSE-lncRNAs in zebrafish embryos caused severe developmental delays that were rescued by human homologs. Furthermore, we verified that human, mouse and zebrafish coPARSE-lncRNA homologs tend to bind similar RBPs with their conserved functions relying on specific RBP-binding sites. Overall, our study demonstrates a comprehensive approach for studying the functional conservation of lncRNAs and implicates numerous lncRNAs in regulating vertebrate physiology. A new computational method coupled with a CRISPR-Cas12a screen identifies human long noncoding RNAs (lncRNAs) that lead to cell proliferation defects, which can be rescued by zebrafish homologs. Knockdown of four zebrafish lncRNAs that perturb embryonic development can be rescued by human homologs.
引用
收藏
页码:124 / 135
页数:43
相关论文
共 50 条
  • [31] Prediction of conserved microRNAs from skin and mucosal human papillomaviruses
    Gu, Wenyi
    An, Jiyuan
    Ye, Ping
    Zhao, Kong-Nan
    Antonsson, Annika
    ARCHIVES OF VIROLOGY, 2011, 156 (07) : 1161 - 1171
  • [32] Human–Robot Collaborative Lifting Motion Prediction and Experimental Validation
    Asif Arefeen
    Joel Quarnstrom
    Shahbaz P. Qadri Syed
    He Bai
    Yujiang Xiang
    Journal of Intelligent & Robotic Systems, 2023, 109
  • [33] Computational Identification, Target Prediction, and Validation of Conserved miRNAs in Insulin Plant (Costus pictus D. Don)
    Das, Akan
    Das, Purabi
    Kalita, Mohan C.
    Mondal, Tapan K.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2016, 178 (03) : 513 - 526
  • [34] Computational Identification, Target Prediction, and Validation of Conserved miRNAs in Insulin Plant (Costus pictus D. Don)
    Akan Das
    Purabi Das
    Mohan C. Kalita
    Tapan K. Mondal
    Applied Biochemistry and Biotechnology, 2016, 178 : 513 - 526
  • [35] miRNA Targets: From Prediction Tools to Experimental Validation
    Riolo, Giulia
    Cantara, Silvia
    Marzocchi, Carlotta
    Ricci, Claudia
    METHODS AND PROTOCOLS, 2021, 4 (01) : 1 - 20
  • [36] Computational Prediction and Rationalization, and Experimental Validation of Handedness Induction in Helical Aromatic Oligoamide Foldamers
    Liu, Zhiwei
    Hu, Xiaobo
    Abramyan, Ara M.
    Meszaros, Adam
    Csekei, Marton
    Kotschy, Andras
    Huc, Ivan
    Pophristic, Vojislava
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (15) : 3605 - 3615
  • [37] Prediction and experimental validation of osteoporosis susceptibility genes by computational disease gene identification strategy
    Huang, Qingyang
    Gloria, Li
    Li, H. Y.
    Kung, Annie W. C.
    BONE, 2008, 43 : S44 - S45
  • [38] Validation of a Computational Cocrystal Prediction Tool: Comparison of Virtual and Experimental Cocrystal Screening Results
    Grecu, Tudor
    Hunter, Christopher A.
    Gardiner, Eleanor J.
    McCabe, James F.
    CRYSTAL GROWTH & DESIGN, 2014, 14 (01) : 165 - 171
  • [39] Identification of Blood Biomarkers for Alzheimer's Disease Through Computational Prediction and Experimental Validation
    Yao, Fang
    Zhang, Kaoyuan
    Zhang, Yan
    Guo, Yi
    Li, Aidong
    Xiao, Shifeng
    Liu, Qiong
    Shen, Liming
    Ni, Jiazuan
    FRONTIERS IN NEUROLOGY, 2019, 9
  • [40] Computational prediction and experimental validation associating FABP-1 and pancreatic adenocarcinoma with diabetes
    Sharaf, Ravi N.
    Butte, Atul J.
    Montgomery, Kelli D.
    Pai, Reetesh
    Dudley, Joel T.
    Pasricha, Pankaj J.
    BMC GASTROENTEROLOGY, 2011, 11