Computational prediction and experimental validation identify functionally conserved lncRNAs from zebrafish to human

被引:11
|
作者
Huang, Wenze [1 ,2 ,3 ,4 ]
Xiong, Tuanlin [1 ,2 ,3 ,4 ]
Zhao, Yuting [5 ,6 ]
Heng, Jian [7 ,8 ]
Han, Ge [1 ,2 ,3 ,4 ]
Wang, Pengfei [1 ,2 ,3 ,4 ]
Zhao, Zhihua [9 ]
Shi, Ming [5 ,6 ]
Li, Juan [9 ]
Wang, Jiazhen [5 ]
Wu, Yixia [5 ]
Liu, Feng [7 ,8 ,10 ,11 ]
Xi, Jianzhong Jeff [9 ]
Wang, Yangming [5 ]
Zhang, Qiangfeng Cliff [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Ctr Synthet & Syst Biol, Sch Life Sci, MOE Key Lab Bioinformat, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Beijing, Peoples R China
[3] Tsinghua Univ, Frontier Res Ctr Biol Struct, Sch Life Sci, Beijing, Peoples R China
[4] Tsinghua Peking Ctr Life Sci, Beijing, Peoples R China
[5] Peking Univ, Inst Mol Med, Coll Future Technol, Beijing, Peoples R China
[6] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[7] Chinese Acad Sci, Inst Zool, State Key Lab Membrane Biol, Beijing, Peoples R China
[8] Chinese Acad Sci, Inst Stem Cell & Regenerat, Beijing, Peoples R China
[9] Peking Univ, Coll Future Technol, Dept Biomed Engn, Beijing, Peoples R China
[10] Univ Chinese Acad Sci, Beijing, Peoples R China
[11] Shandong Univ, Sch Life Sci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
LONG NONCODING RNA; EMBRYONIC-DEVELOPMENT; EVOLUTION; GENE; EXPRESSION; CANCER; ELEMENTS; SCREENS; IDENTIFICATION; TRANSCRIPTOME;
D O I
10.1038/s41588-023-01620-7
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Functional studies of long noncoding RNAs (lncRNAs) have been hindered by the lack of methods to assess their evolution. Here we present lncRNA Homology Explorer (lncHOME), a computational pipeline that identifies a unique class of long noncoding RNAs (lncRNAs) with conserved genomic locations and patterns of RNA-binding protein (RBP) binding sites (coPARSE-lncRNAs). Remarkably, several hundred human coPARSE-lncRNAs can be evolutionarily traced to zebrafish. Using CRISPR-Cas12a knockout and rescue assays, we found that knocking out many human coPARSE-lncRNAs led to cell proliferation defects, which were subsequently rescued by predicted zebrafish homologs. Knocking down coPARSE-lncRNAs in zebrafish embryos caused severe developmental delays that were rescued by human homologs. Furthermore, we verified that human, mouse and zebrafish coPARSE-lncRNA homologs tend to bind similar RBPs with their conserved functions relying on specific RBP-binding sites. Overall, our study demonstrates a comprehensive approach for studying the functional conservation of lncRNAs and implicates numerous lncRNAs in regulating vertebrate physiology. A new computational method coupled with a CRISPR-Cas12a screen identifies human long noncoding RNAs (lncRNAs) that lead to cell proliferation defects, which can be rescued by zebrafish homologs. Knockdown of four zebrafish lncRNAs that perturb embryonic development can be rescued by human homologs.
引用
收藏
页码:124 / 135
页数:43
相关论文
共 50 条
  • [1] Computational prediction and experimental validation identify functionally conserved lncRNAs from zebrafish to human
    Wenze Huang
    Tuanlin Xiong
    Yuting Zhao
    Jian Heng
    Ge Han
    Pengfei Wang
    Zhihua Zhao
    Ming Shi
    Juan Li
    Jiazhen Wang
    Yixia Wu
    Feng Liu
    Jianzhong Jeff Xi
    Yangming Wang
    Qiangfeng Cliff Zhang
    Nature Genetics, 2024, 56 : 124 - 135
  • [2] Systematic experimental and computational strategies to identify and functionally characterize lncRNAs and RNA modifications in development and disease
    Amaral, P.
    Leonardi, T.
    Leger, A.
    Han, N.
    Kouzarides, T.
    Nakaya, H.
    FEBS OPEN BIO, 2024, 14 : 33 - 33
  • [3] Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals
    Kahori Takane
    Kosuke Fujishima
    Yuka Watanabe
    Asako Sato
    Nobuto Saito
    Masaru Tomita
    Akio Kanai
    BMC Genomics, 11
  • [4] Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals
    Takane, Kahori
    Fujishima, Kosuke
    Watanabe, Yuka
    Sato, Asako
    Saito, Nobuto
    Tomita, Masaru
    Kanai, Akio
    BMC GENOMICS, 2010, 11
  • [5] Computational prediction of conserved microRNAs from Solanum tuberosum
    Yang, Wen-zheng
    Zhang, Jian-guang
    Chen, Ji-shuang
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 487 - 490
  • [6] Marine propeller performance: Computational prediction and experimental validation
    Baquero, A
    Haimov, A
    COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS IX, 1999, : 195 - 204
  • [7] Computational prediction and experimental validation of Ciona intestinalis microRNA genes
    Trina M Norden-Krichmar
    Janette Holtz
    Amy E Pasquinelli
    Terry Gaasterland
    BMC Genomics, 8
  • [8] The Fanconi anemia gene network is conserved from zebrafish to human
    Titus, TA
    Selvig, DR
    Qin, BF
    Wilson, C
    Starks, AM
    Roe, BA
    Postlethwait, JH
    GENE, 2006, 371 (02) : 211 - 223
  • [9] Computational prediction and experimental validation of Ciona intestinalis microRNA genes
    Norden-Krichmar, Trina M.
    Holtz, Janette
    Pasquinelli, Amy E.
    Gaasterland, Terry
    BMC GENOMICS, 2007, 8 (1)
  • [10] Integrative analysis of lncRNAs in rheumatoid arthritis: from bioinformatics to experimental validation
    Golestanifar, Ahmad
    Masroor, Arezo
    Khedri, Hengameh
    Saberiyan, Mohammadreza
    Nejatizadeh, Azim
    CLINICAL AND EXPERIMENTAL MEDICINE, 2025, 25 (01)