Forming Adversarial Example Attacks Against Deep Neural Networks With Reinforcement Learning

被引:0
|
作者
Akers, Matthew [1 ]
Barton, Armon [2 ]
机构
[1] US Second Fleet, Hampton Rd, Norfolk, VA 23455 USA
[2] Dept Comp Sci Naval Postgrad Sch, Dept Comp Sci, Monterey, CA 93943 USA
关键词
Deep learning; Perturbation methods; Reinforcement learning; Artificial neural networks; GAME; GO;
D O I
10.1109/MC.2023.3324751
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel reinforcement learning-based adversarial example attack, Adversarial Reinforcement Learning Agent, designed to learn imperceptible perturbation that causes misclassification when added to the input of a deep learning classifier.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 50 条
  • [1] XSS adversarial example attacks based on deep reinforcement learning
    Chen, Li
    Tang, Cong
    He, Junjiang
    Zhao, Hui
    Lan, Xiaolong
    Li, Tao
    COMPUTERS & SECURITY, 2022, 120
  • [2] Understanding adversarial attacks on observations in deep reinforcement learning
    You, Qiaoben
    Ying, Chengyang
    Zhou, Xinning
    Su, Hang
    Zhu, Jun
    Zhang, Bo
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (05)
  • [3] Deep Reinforcement Adversarial Learning Against Botnet Evasion Attacks
    Apruzzese, Giovanni
    Andreolini, Mauro
    Marchetti, Mirco
    Venturi, Andrea
    Colajanni, Michele
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 1975 - 1987
  • [4] A survey on the vulnerability of deep neural networks against adversarial attacks
    Andy Michel
    Sumit Kumar Jha
    Rickard Ewetz
    Progress in Artificial Intelligence, 2022, 11 : 131 - 141
  • [5] Adversarial Attacks and Defenses Against Deep Neural Networks: A Survey
    Ozdag, Mesut
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 152 - 161
  • [6] A survey on the vulnerability of deep neural networks against adversarial attacks
    Michel, Andy
    Jha, Sumit Kumar
    Ewetz, Rickard
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2022, 11 (02) : 131 - 141
  • [7] SIT: Stochastic Input Transformation to Defend Against Adversarial Attacks on Deep Neural Networks
    Guesmi, Amira
    Alouani, Ihsen
    Baklouti, Mouna
    Frikha, Tarek
    Abid, Mohamed
    IEEE DESIGN & TEST, 2022, 39 (03) : 63 - 72
  • [8] Robust Deep Reinforcement Learning with Adversarial Attacks Extended Abstract
    Pattanaik, Anay
    Tang, Zhenyi
    Liu, Shuijing
    Bommannan, Gautham
    Chowdhary, Girish
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 2040 - 2042
  • [9] Instance-based defense against adversarial attacks in Deep Reinforcement Learning
    Garcia, Javier
    Sagredo, Ismael
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [10] Adversarial Attacks Against Reinforcement Learning-Based Portfolio Management Strategy
    Chen, Yu-Ying
    Chen, Chiao-Ting
    Sang, Chuan-Yun
    Yang, Yao-Chun
    Huang, Szu-Hao
    IEEE ACCESS, 2021, 9 : 50667 - 50685