Cyclic homology, S 1-equivariant Floer cohomology and Calabi-Yau structures

被引:1
作者
Ganatra, Sheel [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90007 USA
基金
美国国家科学基金会;
关键词
SYMPLECTIC HOMOLOGY; ALGEBRAS;
D O I
10.2140/gt.2023.27.3461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding S1-equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicity exact sequences and are isomorphisms whenever the (nonequivariant) open-closed map is. These cyclic open-closed maps give constructions of geometric smooth and/or proper Calabi-Yau structures on Fukaya categories, which in the proper case implies the Fukaya category has a cyclic A,,, model in characteristic 0, and also give a purely symplectic proof of the noncommutative Hodge-de Rham degeneration conjecture for smooth and proper subcategories of Fukaya categories of compact symplectic manifolds. Further applications of cyclic open-closed maps, to counting curves in mirror symmetry and to comparing topological field theories, are the subject of joint projects with Perutz and Sheridan, and with Cohen.
引用
收藏
页码:3461 / 3584
页数:126
相关论文
共 66 条
  • [1] Abouzaid M., QUANTUM COHOMO UNPUB
  • [2] An open string analogue of Viterbo functoriality
    Abouzaid, Mohammed
    Seidel, Paul
    [J]. GEOMETRY & TOPOLOGY, 2010, 14 (02) : 627 - 718
  • [3] A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY
    Abouzaid, Mohammld
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2010, (112): : 191 - 240
  • [4] Symplectic Tate homology
    Albers, Peter
    Cieliebak, Kai
    Frauenfelder, Urs
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 : 169 - 205
  • [5] S1-Equivariant Symplectic Homology and Linearized Contact Homology
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (13) : 3849 - 3937
  • [6] Effect of Legendrian surgery
    Bourgeois, Frederic
    Ekholm, Tobias
    Eliashberg, Yasha
    Ganatra, Sheel
    Maydanskiy, Maksim
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (01) : 301 - 389
  • [7] Relative Calabi-Yau structures
    Brav, Christopher
    Dyckerhoff, Tobias
    [J]. COMPOSITIO MATHEMATICA, 2019, 155 (02) : 372 - 412
  • [8] Burghelea Dan, 1986, THEORY PART 2 1983 C, V55, P89
  • [9] POTENTIALS OF HOMOTOPY CYCLIC A∞-ALGEBRAS
    Cho, Cheol-Hyun
    Lee, Sangwook
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2012, 14 (01) : 203 - 220
  • [10] SYMPLECTIC HOMOLOGY .2. A GENERAL CONSTRUCTION
    CIELIEBAK, K
    FLOER, A
    HOFER, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (01) : 103 - 122