Mesoscopic central limit theorem for non-Hermitian random matrices

被引:6
|
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [2 ]
Schroder, Dominik [3 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Dyson Brownian motion; Local law; Girko's formula; Linear statistics; Central limit theorem; LINEAR EIGENVALUE STATISTICS; FIXED-ENERGY UNIVERSALITY; LOCAL SPECTRAL STATISTICS; GAUSSIAN FLUCTUATIONS; CONDITION NUMBER; ENSEMBLES; REAL;
D O I
10.1007/s00440-023-01229-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the mesoscopic linear statistics Sigma(i)f (n(a)(sigma(i) - z(0))) of the eigenvalues {sigma(i)}(i) of large nxn non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any H-0(2) -functions f around any point z0 in the bulk of the spectrum on any mesoscopic scale 0 < a < 1/2. This extends our previous result (Cipolloni et al. in Commun Pure Appl Math, 2019. arXiv:1912.04100), that was valid on the macroscopic scale, a = 0, to cover the entire mesoscopic regime. The main novelty is a local law for the product of resolvents for the Hermitization of X at spectral parameters z(1), z(2) with an improved error term in the entire mesoscopic regime |z(1) - z(2)| >> n(-1/2). The proof is dynamical; it relies on a recursive tandem of the characteristic flow method and the Green function comparison idea combined with a separation of the unstable mode of the underlying stability operator.
引用
收藏
页码:1131 / 1182
页数:52
相关论文
共 50 条
  • [41] Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum Chaos
    Li, Jiachen
    Prosen, Tomaz
    Chan, Amos
    PHYSICAL REVIEW LETTERS, 2021, 127 (17)
  • [42] Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices
    Joglekar, Yogesh N.
    Karr, William A.
    PHYSICAL REVIEW E, 2011, 83 (03):
  • [43] Central Limit Theorem for Linear Eigenvalue Statistics of the Wigner and Sample Covariance Random Matrices
    Shcherbina, M.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2011, 7 (02) : 176 - 192
  • [44] Ornstein-Uhlenbeck diffusion of hermitian and non-hermitian matrices-unexpected links
    Blaizot, Jean-Paul
    Grela, Jacek
    Nowak, Maciej A.
    Tarnowski, Wojciech
    Warchol, Piotr
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [45] A central limit theorem for random walks in random labyrinths
    Bezuidenhout, C
    Grimmett, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (05): : 631 - 683
  • [46] Central limit theorem for CβE pair dependent statistics in mesoscopic regime
    Aguirre, Ander
    Soshnikov, Alexander
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [47] The Central Limit Theorem for Random Dynamical Systems
    Katarzyna Horbacz
    Journal of Statistical Physics, 2016, 164 : 1261 - 1291
  • [48] Central limit theorem for random strict partitions
    Yakubovich Y.
    Journal of Mathematical Sciences, 2001, 107 (5) : 4296 - 4304
  • [49] The Central Limit Theorem for Random Dynamical Systems
    Horbacz, Katarzyna
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (06) : 1261 - 1291
  • [50] A Central Limit Theorem for Products of Random Matrices and GOE Statistics for the Anderson Model on Long Boxes
    Christian Sadel
    Bálint Virág
    Communications in Mathematical Physics, 2016, 343 : 881 - 919