Mesoscopic central limit theorem for non-Hermitian random matrices

被引:10
作者
Cipolloni, Giorgio [1 ]
Erdos, Laszlo [2 ]
Schroder, Dominik [3 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Swiss Fed Inst Technol, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Dyson Brownian motion; Local law; Girko's formula; Linear statistics; Central limit theorem; LINEAR EIGENVALUE STATISTICS; FIXED-ENERGY UNIVERSALITY; LOCAL SPECTRAL STATISTICS; GAUSSIAN FLUCTUATIONS; CONDITION NUMBER; ENSEMBLES; REAL;
D O I
10.1007/s00440-023-01229-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the mesoscopic linear statistics Sigma(i)f (n(a)(sigma(i) - z(0))) of the eigenvalues {sigma(i)}(i) of large nxn non-Hermitian random matrices with complex centred i.i.d. entries are asymptotically Gaussian for any H-0(2) -functions f around any point z0 in the bulk of the spectrum on any mesoscopic scale 0 < a < 1/2. This extends our previous result (Cipolloni et al. in Commun Pure Appl Math, 2019. arXiv:1912.04100), that was valid on the macroscopic scale, a = 0, to cover the entire mesoscopic regime. The main novelty is a local law for the product of resolvents for the Hermitization of X at spectral parameters z(1), z(2) with an improved error term in the entire mesoscopic regime |z(1) - z(2)| >> n(-1/2). The proof is dynamical; it relies on a recursive tandem of the characteristic flow method and the Green function comparison idea combined with a separation of the unstable mode of the underlying stability operator.
引用
收藏
页码:1131 / 1182
页数:52
相关论文
共 50 条
[1]  
Adhikari, 2022, ARXIV
[2]  
Adhikari A, 2020, PROBAB THEORY REL, V178, P893, DOI 10.1007/s00440-020-00992-9
[3]  
Alt J, 2021, Probability and Mathematical Physics, V2, P221, DOI 10.2140/pmp.2021.2.221
[4]   LOCAL INHOMOGENEOUS CIRCULAR LAW [J].
Alt, Johannes ;
Erdos, Laszlo ;
Krueger, Torben .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (01) :148-203
[5]  
Bai ZD, 1997, ANN PROBAB, V25, P494
[6]   The distribution of overlaps between eigenvectors of Ginibre matrices [J].
Bourgade, P. ;
Dubach, G. .
PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) :397-464
[7]  
Bourgade P., 2022, ARXIV
[8]   Extreme gaps between eigenvalues of Wigner matrices [J].
Bourgade, Paul .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) :2823-2873
[9]   Fixed Energy Universality for Generalized Wigner Matrices [J].
Bourgade, Paul ;
Erdos, Laszlo ;
Yau, Horng-Tzer ;
Yin, Jun .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (10) :1815-1881
[10]   Local circular law for random matrices [J].
Bourgade, Paul ;
Yau, Horng-Tzer ;
Yin, Jun .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) :545-595