Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes

被引:3
作者
Li, Zoushuang [1 ]
Chen, Yuanxiao [1 ]
Nie, Yufeng [1 ]
Yang, Fan [1 ]
Liu, Xiao [1 ]
Gao, Yuan [1 ]
Shan, Bin [2 ]
Chen, Rong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiscale modelling; CFD; Spatial ALD; Porous electrodes; Dynamic mesh; ATOMIC LAYER DEPOSITION; THIN-FILM; AL2O3; TEMPERATURE; MECHANISMS; DIFFUSION; COVERAGE; TIO2;
D O I
10.1016/j.cej.2023.147486
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The self-limiting surface reaction characteristic of atomic layer deposition (ALD) makes it ideal for the surface modification of electrode materials for lithium-ion batteries (LIBs). Spatial ALD shows promise as a scalable method for the coating on pre-fabricated electrode sheets. As a strong-coupled multiscale process, various process conditions and microstructure parameters have great influences on the macroscale fluid dynamics and the pore-scale diffusion-reaction process, thus affecting the coating efficiency. This study presents a multiscale numerical model that combines computational fluid dynamics (CFD) with multilevel pore-scale diffusion-reaction kinetics to explore the spatial ALD process on porous LIB electrodes. The dynamic mesh method is utilized to simulate electrode movement. The considerable active surface-to-volume ratio of the porous structure limits the precursor infiltration depth due to the low diffusion rate and inadequate precursor supply. As the electrode velocity increases, an asymmetric distribution of precursor concentration under the injector is observed with a rapid decrease. Elevating both the precursor concentration and inlet gas velocity augments the coating depth by enhancing the supply of the precursor. The experimental data aligns well with our numerical results, verifying the accuracy of the multiscale CFD model. Our observations reveal that a relatively lower operating pressure, around 0.1 atm, compared to 0.01 atm and 1 atm, optimizes the deposition rate along the electrode depth during the half-ALD cycle, especially when the pore size is larger. Electrode porosity of about 0.4 notably improves coating uniformity by elevating the precursor diffusion rate. Predictions show that with a substrate velocity of 0.2 m/s, the coating depth on an electrode having higher porosity at the top compared to the bottom via atmospheric spatial ALD could reach a depth of 38 mu m with a precursor utilization of 78 %.
引用
收藏
页数:15
相关论文
共 56 条
[11]   ANALYSIS OF THE BRINKMAN EQUATION AS A MODEL FOR FLOW IN POROUS-MEDIA [J].
DURLOFSKY, L ;
BRADY, JF .
PHYSICS OF FLUIDS, 1987, 30 (11) :3329-3341
[12]   Atomic layer deposition in porous electrodes: A pore-scale modeling study [J].
Fang, Wen-Zhen ;
Tang, Yu-Qing ;
Ban, Chunmei ;
Kang, Qinjun ;
Qiao, Rui ;
Tao, Wen-Quan .
CHEMICAL ENGINEERING JOURNAL, 2019, 378
[13]   Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water [J].
Gakis, Georgios P. ;
Vergnes, Hugues ;
Scheid, Emmanuel ;
Vahlas, Constantin ;
Boudouvis, Andreas G. ;
Caussat, Brigitte .
CHEMICAL ENGINEERING SCIENCE, 2019, 195 :399-412
[14]   Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode [J].
Gao, Han ;
Cai, Jiyu ;
Xu, Gui-Liang ;
Lo, Luxi ;
Ren, Yang ;
Meng, Xiangbo ;
Amine, Khalil ;
Chen, Zonghai .
CHEMISTRY OF MATERIALS, 2019, 31 (08) :2723-2730
[15]   Atomic Layer Deposition: An Overview [J].
George, Steven M. .
CHEMICAL REVIEWS, 2010, 110 (01) :111-131
[16]   A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches [J].
Gordon, RG ;
Hausmann, D ;
Kim, E ;
Shepard, J .
CHEMICAL VAPOR DEPOSITION, 2003, 9 (02) :73-78
[17]   Modeling the precursor utilization in atomic layer deposition on nanostructured materials in fluidized bed reactors [J].
Grillo, Fabio ;
Kreutzer, Michiel T. ;
van Ommen, J. Ruud .
CHEMICAL ENGINEERING JOURNAL, 2015, 268 :384-398
[18]   Modeling of deposit formation in mesoporous substrates via atomic layer deposition: Insights from pore-scale simulation [J].
Gu, Hao ;
Lee, Dennis T. ;
Corkery, Peter ;
Miao, Yurun ;
Kim, Jung-Sik ;
Yuan, Yuchen ;
Xu, Zhen-liang ;
Dai, Gance ;
Parsons, Gregory N. ;
Kevrekidis, Ioannis G. ;
Zhuang, Liwei ;
Tsapatsis, Michael .
AICHE JOURNAL, 2022, 68 (12)
[19]   3D LiMn2O4 Thin Film Deposited by ALD: A Road toward High-Capacity Electrode for 3D Li-Ion Microbatteries [J].
Hallot, Maxime ;
Nikitin, Viktor ;
Lebedev, Oleg, I ;
Retoux, Richard ;
Troadec, David ;
De Andrade, Vincent ;
Roussel, Pascal ;
Lethien, Christophe .
SMALL, 2022, 18 (14)
[20]   Impact of ultrathin coating layer on lithium-ion intercalation into particles for lithium-ion batteries [J].
He, Yufang ;
Pham, Hiep ;
Liang, Xinhua ;
Park, Jonghyun .
CHEMICAL ENGINEERING JOURNAL, 2022, 440