Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes

被引:3
作者
Li, Zoushuang [1 ]
Chen, Yuanxiao [1 ]
Nie, Yufeng [1 ]
Yang, Fan [1 ]
Liu, Xiao [1 ]
Gao, Yuan [1 ]
Shan, Bin [2 ]
Chen, Rong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiscale modelling; CFD; Spatial ALD; Porous electrodes; Dynamic mesh; ATOMIC LAYER DEPOSITION; THIN-FILM; AL2O3; TEMPERATURE; MECHANISMS; DIFFUSION; COVERAGE; TIO2;
D O I
10.1016/j.cej.2023.147486
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The self-limiting surface reaction characteristic of atomic layer deposition (ALD) makes it ideal for the surface modification of electrode materials for lithium-ion batteries (LIBs). Spatial ALD shows promise as a scalable method for the coating on pre-fabricated electrode sheets. As a strong-coupled multiscale process, various process conditions and microstructure parameters have great influences on the macroscale fluid dynamics and the pore-scale diffusion-reaction process, thus affecting the coating efficiency. This study presents a multiscale numerical model that combines computational fluid dynamics (CFD) with multilevel pore-scale diffusion-reaction kinetics to explore the spatial ALD process on porous LIB electrodes. The dynamic mesh method is utilized to simulate electrode movement. The considerable active surface-to-volume ratio of the porous structure limits the precursor infiltration depth due to the low diffusion rate and inadequate precursor supply. As the electrode velocity increases, an asymmetric distribution of precursor concentration under the injector is observed with a rapid decrease. Elevating both the precursor concentration and inlet gas velocity augments the coating depth by enhancing the supply of the precursor. The experimental data aligns well with our numerical results, verifying the accuracy of the multiscale CFD model. Our observations reveal that a relatively lower operating pressure, around 0.1 atm, compared to 0.01 atm and 1 atm, optimizes the deposition rate along the electrode depth during the half-ALD cycle, especially when the pore size is larger. Electrode porosity of about 0.4 notably improves coating uniformity by elevating the precursor diffusion rate. Predictions show that with a substrate velocity of 0.2 m/s, the coating depth on an electrode having higher porosity at the top compared to the bottom via atmospheric spatial ALD could reach a depth of 38 mu m with a precursor utilization of 78 %.
引用
收藏
页数:15
相关论文
共 56 条
[1]   Atomic-Layer Deposition into 2-versus 3-Dimensionally Ordered Nanoporous Media: Pore Size or Connectivity? [J].
Bae, Changdeuck ;
Kim, Hyunchul ;
Kim, Eunsoo ;
Park, Hyung Gyu ;
Shin, Hyunjung .
CHEMISTRY OF MATERIALS, 2018, 30 (14) :4748-4754
[2]   Comprehensive Insights into the Porosity of Lithium-Ion Battery Electrodes: A Comparative Study on Positive Electrodes Based on LiNi0.6Mn0.2Co0.2O2 (NMC622) [J].
Beuse, Thomas ;
Fingerle, Mathias ;
Wagner, Christian ;
Winter, Martin ;
Boerner, Markus .
BATTERIES-BASEL, 2021, 7 (04)
[3]   Surface functionalization on nanoparticles via atomic layer deposition [J].
Cao, Kun ;
Cai, Jiaming ;
Shan, Bin ;
Chen, Rong .
SCIENCE BULLETIN, 2020, 65 (08) :678-688
[4]   Atomic Layer Deposition of High-Capacity Anodes for Next-Generation Lithium-Ion Batteries and Beyond [J].
Cao, Yanqiang ;
Meng, Xiangbo ;
Li, Aidong .
ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4 (03) :363-391
[5]   Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures [J].
Chen Y. ;
Li Z. ;
Dai Z. ;
Yang F. ;
Wen Y. ;
Shan B. ;
Chen R. .
Chemical Engineering Journal, 2023, 472
[6]   Enhanced Cycleabity in Lithium Ion Batteries: Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes [J].
Cheng, Ho-Ming ;
Wang, Fu-Ming ;
Chu, Jinn P. ;
Santhanam, Raman ;
Rick, John ;
Lo, Shen-Chuan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) :7629-7637
[7]   Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method [J].
Cong, Wentao ;
Li, Zoushuang ;
Cao, Kun ;
Feng, Guang ;
Chen, Rong .
CHEMICAL ENGINEERING SCIENCE, 2020, 217
[8]   Conformality in atomic layer deposition: Current status overview of analysis and modelling [J].
Cremers, Veronique ;
Puurunen, Riikka L. ;
Dendooven, Jolien .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[9]  
Cussler E. L., 2009, Diffusion: Mass Transfer in Fluid Systems
[10]   Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition [J].
Deng, Zhang ;
He, Wenjie ;
Duan, Chenlong ;
Chen, Rong ;
Shan, Bin .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (01)