Poster Abstract: mmWaveNet: Indoor Point Cloud Generation from Millimeter-Wave Devices

被引:0
|
作者
Gu, Zhuangzhuang [1 ]
Sur, Sanjib [1 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
来源
PROCEEDINGS OF THE 2023 THE 22ND INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN 2023 | 2023年
关键词
Millimeter Wave; Point Cloud Data; Deep Learning;
D O I
10.1145/3583120.3589822
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Millimeter wave (mmWave) 3D imaging has been applied for point cloud data (PCD) generation due to its valuable attributes, such as working under low light, compact size, and low-cost. However, past works have focused on transforming millimeter wave reflection signals into other data structures, like polar images and coarse PCDs before applying neural network to produce dense PCDs. Those algorithms will filter some useful features. To address this issue, our paper proposes an innovative prototype: mmWaveNet, a deep learning model that directly uses reflection signals as input and generates high-quality PCDs. We have experimentally evaluated mmWaveNet in a large indoor environment.
引用
收藏
页码:308 / 309
页数:2
相关论文
共 50 条
  • [1] MilliPCD: Beyond Traditional Vision Indoor Point Cloud Generation via Handheld Millimeter-Wave Devices
    Cai, Pingping
    Sur, Sanjib
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2022, 6 (04):
  • [2] Poster: MilliCloud: Beyond Vision PCD Generation using Millimeter-Wave
    Cai, Pingping
    Sur, Sanjib
    PROCEEDINGS OF THE 2022 THE 23RD ANNUAL INTERNATIONAL WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS (HOTMOBILE '22), 2022, : 123 - 124
  • [3] Single- and Multiple-Access Point Indoor Localization for Millimeter-Wave Networks
    Palacios, Joan
    Bielsa, Guillermo
    Casari, Paolo
    Widmer, Joerg
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (03) : 1927 - 1942
  • [4] Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction
    Li, Wei
    Guo, Zhiqi
    Han, Zhuangzhi
    ELECTRONICS, 2025, 14 (02):
  • [5] Millimeter-wave Antennas for Mobile Devices and Networks
    Viikari, Ville
    Ala-Laurinaho, Juha
    Kurvinen, Joni
    Kahkonen, Henri
    Lehtovuori, Anu
    Leino, Mikko
    Chen, Zhi Ning
    2019 12TH GLOBAL SYMPOSIUM ON MILLIMETER WAVES (GSMM 2019), 2019, : 10 - 12
  • [6] Multi-Person Action Recognition Based on Millimeter-Wave Radar Point Cloud
    Dang, Xiaochao
    Fan, Kai
    Li, Fenfang
    Tang, Yangyang
    Gao, Yifei
    Wang, Yue
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [7] Millimeter-wave indoor radio channel with artificial reflector
    Kajiwara, A
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1997, 46 (02) : 486 - 493
  • [8] Inkjet-printed elastomeric millimeter-wave devices
    Pacchini, Sebastien
    Hage-Ali, Sami
    Togonal, Alienor
    Tiercelin, Nicolas
    Pernod, Philippe
    Coquet, Philippe
    2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, : 13 - 16
  • [9] 60 GHz Millimeter-Wave Propagation Characteristics in Indoor Environment
    Wang, Mengxue
    Liu, Yuanjian
    Li, Shuangde
    Chen, Zhipeng
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 749 - 752
  • [10] A Millimeter-Wave Indoor Backscattering Channel Model for Environment Mapping
    Guerra, Anna
    Guidi, Francesco
    Dardari, Davide
    Clemente, Antonio
    D'Errico, Raffaele
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (09) : 4935 - 4940