Deep learning-based prediction of lithium-ion batteries state of charge for electric vehicles in standard driving cycle

被引:9
|
作者
Hai, Tao [1 ,2 ,3 ]
Dhahad, Hayder A. [4 ]
Jasim, Khalid Fadhil [5 ]
Sharma, Kamal [6 ]
Zhou, Jincheng [1 ,3 ]
Fouad, Hassan [7 ]
El-Shafai, Walid [8 ]
机构
[1] Qiannan Normal Univ Nationalities, Sch Comp & Informat, Duyun 558000, Guizhou, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Guizhou, Peoples R China
[3] Key Lab Complex Syst & Intelligent Optimizat Guiz, Duyun 558000, Guizhou, Peoples R China
[4] Univ Technol Baghdad, Dept Mech Engn, Baghdad, Iraq
[5] Cihan Univ Erbil, Dept Comp Sci, Erbil, Kurdistan Regio, Iraq
[6] GLA Univ, Inst Engn & Technol, Mathura 281406, Uttar Pradesh, India
[7] King Saud Univ, Community Coll, Dept Appl Sci Med, POB 11433, Riyadh, Saudi Arabia
[8] Menoufia Univ, Fac Elect Engn, Dept Elect & Elect Commun Engn, Menoufia 32952, Egypt
基金
中国国家自然科学基金;
关键词
Electric vehicles (EVs); Driving cycle; Energy consumption; State of charge; Battery temperature; Deep learning; Lithium-ion batteries; THERMAL MANAGEMENT; MODEL;
D O I
10.1016/j.seta.2023.103461
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Significant climatic shifts occurred during this period, resulting in threatening consequences for people's lives and industries. Global warming is one of the most serious consequences of these climate changes, and it has disastrous consequences for daily human existence. The utilization of public transportation has been encouraged at the societal level as a solution. An all-electric vehicle is evaluated in this research paper. Using two various types of regular driving cycles, we were able to evaluate the battery performance of electric vehicles (EVs). The variables influencing vehicle performance, such as battery state of charge (SOC), energy consumption, and battery functioning temperature, are investigated. The results demonstrate that the rate of urban traveling significantly impacts travel efficiency and the range. In addition, owing to the significance of battery capacity, the influences of different variables on forecasting battery state of charge were assessed in the second step. The results show that the driving behavior and acceleration rate of the vehicle influence the SOC of the battery. The results of this study also showed that city driving has a significant effect on Ev performance in the travel distance range.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hybrid Deep Learning Algorithm for the State of Charge Prediction of the Lithium-Ion Battery for Electric Vehicles
    Sugashini, Rajarathinam
    Mangaiyarkarasi, Soundarrajan Padmanadhan
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2023, 42 (08): : 2650 - 2660
  • [2] Accurate state of charge prediction for lithium-ion batteries in electric vehicles using deep learning and dimensionality reduction
    Jayaraman, Ramprabu
    Thottungal, Rani
    ELECTRICAL ENGINEERING, 2024, 106 (02) : 2175 - 2195
  • [3] Accurate state of charge prediction for lithium-ion batteries in electric vehicles using deep learning and dimensionality reduction
    Ramprabu Jayaraman
    Rani Thottungal
    Electrical Engineering, 2024, 106 : 2175 - 2195
  • [4] Real Driving Cycle-Based State of Charge Prediction for EV Batteries Using Deep Learning Methods
    Hong, Seokjoon
    Hwang, Hoyeon
    Kim, Daniel
    Cui, Shengmin
    Joe, Inwhee
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [5] Deep Learning for State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles: A Systematic Review
    Liu, Chenyuan
    Li, Heng
    Li, Kexin
    Wu, Yue
    Lv, Baogang
    ENERGIES, 2025, 18 (06)
  • [6] A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles
    Wang, Zuolu
    Feng, Guojin
    Zhen, Dong
    Gu, Fengshou
    Ball, Andrew
    ENERGY REPORTS, 2021, 7 : 5141 - 5161
  • [7] Lithium-Ion Batteries State of Charge Prediction of Electric Vehicles Using RNNs-CNNs Neural Networks
    Zhao, Fen
    Li, Yinguo
    Wang, Xinheng
    Bai, Ling
    Liu, Tailin
    IEEE ACCESS, 2020, 8 : 98168 - 98180
  • [8] State of Charge Estimation of Lithium-Ion Batteries Based on Temporal Convolutional Network and Transfer Learning
    Liu, Yuefeng
    Li, Jiaqi
    Zhang, Gong
    Hua, Bin
    Xiong, Neal
    IEEE ACCESS, 2021, 9 : 34177 - 34187
  • [9] State of Charge Prediction for Lithium-ion Batteries
    Fan, Bo
    Pu, Jiexin
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2014, 42 (05) : 464 - 470
  • [10] State-of-Charge Estimation of Lithium-ion Batteries Using LSTM Deep Learning Method
    Chung, Dae-Won
    Ko, Jae-Ha
    Yoon, Keun-Young
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (03) : 1931 - 1945