Short-term wind power forecasting based on multivariate/multi-step LSTM with temporal feature attention mechanism

被引:29
|
作者
Liu, Xin [1 ,2 ]
Zhou, Jun [1 ]
机构
[1] Hohai Univ, Coll Energy & Elect Engn, Nanjing 211100, Peoples R China
[2] Nanjing Inst Technol, Ind Ctr, Sch Innovat & Entrepreneurship, Nanjing 211167, Peoples R China
关键词
Wind power forecasting; Long short-term memory; Multivariable/multi-step; Multi-task learning; Attention mechanism; DEEP BELIEF NETWORK; NEURAL-NETWORKS; SPEED; MULTISTEP; DECOMPOSITION;
D O I
10.1016/j.asoc.2023.111050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precision enhancement for short-term wind power forecasting can alleviate negative impact of the forecasting results on wind power generation. Due to complexities and nonlinearities among factors and facets in wind power, it is essential to achieve reliable and stable power generation via the long short-term memory (LSTM) forecasting. To this purpose, multi-task temporal feature attention (MTTFA) based LSTM, namely MTTFA-LSTM, is proposed for multivariate/multi-step wind power forecasting with historical power and meteorological data, in which task-sharing and task-specifying layers are designed for task co-features extracting and task specifics discriminating, respectively. More specifically, in the task-sharing layer, multi-dimensional inputs are fed into LSTM to extract long-term trends, while in the task-specifying layer, one-dimensional convolution operations extract temporal features hidden in each and all time steps. Furthermore, an attention mechanism is adopted to adaptively tune weights for temporal features. Finally, the proposed model is leveraged to cope with different short-term wind power forecasting (SWPF) problems based on the national renewable energy laboratory's (NREL) wind power data. Simulation results show that the proposed MTTFA-LSTM achieves persistent excellent forecasting accuracy, comparing its backbone STL model, TFA-LSTM as well as the benchmark MTL models in the same setting, which indicate that the complex and non-linear interdependencies among multi-dimensional data can be well depicted by the proposed model.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction
    Li, Hua
    Wang, Zhen
    Shan, Binbin
    Li, Lingling
    ENERGIES, 2022, 15 (22)
  • [32] Short-Term Multi-Step Ahead Wind Power Predictions Based On A Novel Deep Convolutional Recurrent Network Method
    Liu, Xin
    Yang, Luoxiao
    Zhang, Zijun
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (03) : 1820 - 1833
  • [33] Short-term wind power forecasting model based on temporal convolutional network and Informer
    Gong, Mingju
    Yan, Changcheng
    Xu, Wei
    Zhao, Zhixuan
    Li, Wenxiang
    Liu, Yan
    Li, Sheng
    ENERGY, 2023, 283
  • [34] Multi-task short-term reactive and active load forecasting method based on attention-LSTM model
    Qin, Jiaqi
    Zhang, Yi
    Fan, Shixiong
    Hu, Xiaonan
    Huang, Yongqiang
    Lu, Zexin
    Liu, Yan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 135
  • [35] Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism
    Zhou, Hangxia
    Zhang, Yujin
    Yang, Lingfan
    Liu, Qian
    Yan, Ke
    Du, Yang
    IEEE ACCESS, 2019, 7 : 78063 - 78074
  • [36] Short-Term Wind Power Forecasting Based on Feature Analysis and Error Correction
    Liu, Zifa
    Li, Xinyi
    Zhao, Haiyan
    ENERGIES, 2023, 16 (10)
  • [37] Multi-step wind power forecast based on VMD-LSTM
    Han, Li
    Zhang, Rongchang
    Wang, Xuesong
    Bao, Achun
    Jing, Huitian
    IET RENEWABLE POWER GENERATION, 2019, 13 (10) : 1690 - 1700
  • [38] Multi-Step Ahead Short-Term Load Forecasting Using Hybrid Feature Selection and Improved Long Short-Term Memory Network
    Pei, Shaoqian
    Qin, Hui
    Yao, Liqiang
    Liu, Yongqi
    Wang, Chao
    Zhou, Jianzhong
    ENERGIES, 2020, 13 (16)
  • [39] Short-term wind power forecasting through stacked and bi directional LSTM techniques
    Khan, Mehmood Ali
    Khan, Iftikhar Ahmed
    Shah, Sajid
    EL-Affendi, Mohammed
    Jadoon, Waqas
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [40] A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting
    Yao, Zonggui
    Wang, Chen
    SUSTAINABILITY, 2018, 10 (05)