An extension of Aigner's theorem

被引:0
作者
Tho, Nguyen Xuan [1 ]
机构
[1] Hanoi Univ Sci & Technol, Hanoi, Vietnam
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 01期
关键词
Diophantine equations; Fermat equations; Algebraic number fields; Rational function fields; FERMATS LAST THEOREM; TERNARY DIOPHANTINE EQUATIONS; ALGEBRAIC POINTS; CLASS FIELDS;
D O I
10.1007/s00605-023-01913-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1957, Aigner (Monatsh Math 61:147-150, 1957) showed that the equations x(6) + y(6) = z(6) and x(9) + y(9) = z(9) have no solutions in any quadratic number field with xyz not equal 0. We show that Aigner's result holds for all equations x(3n) + y(3n) = z(3n), where n >= 2 is a positive integer. The proof combines Aigner's idea with deep results on Fermat's equation and its variants.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 33 条
[1]  
Aigner A., 1934, JAHRESBER DTSCH MATH, V43, P226
[2]  
Aigner A., 1957, Monatsh. Math., V61, P147
[3]   Ternary Diophantine equations of signature (p, p, 3) [J].
Bennett, MA ;
Vatsal, V ;
Yazdani, S .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1399-1416
[4]   Ternary diophantine equations via galois representations and modular forms [J].
Bennett, MA ;
Skinner, CM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01) :23-54
[5]   Generalized Fermat equations: A miscellany [J].
Bennett, Michael A. ;
Chen, Imin ;
Dahmen, Sander R. ;
Yazdani, Soroosh .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) :1-28
[6]   The Fermat cubic and quartic curves over cyclic fields [J].
Bremner, Andrew ;
Choudhry, Ajai .
PERIODICA MATHEMATICA HUNGARICA, 2020, 80 (02) :147-157
[7]  
Burnside W, 1915, P LOND MATH SOC, V14, P1
[8]  
Darmon H, 1997, J REINE ANGEW MATH, V490, P81
[9]   On the generalized Fermat equation over totally real fields [J].
Deconinck, Heline .
ACTA ARITHMETICA, 2016, 173 (03) :225-237
[10]  
Faddeev D.K., 1960, SOVIET MATH DOKL, V1, P1149