Dynamical and physical characteristics of soliton solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky system

被引:0
|
作者
Alruwaili, Abdulmohsen D. [1 ]
Seadawy, Aly R. [2 ]
Ali, Asghar [3 ]
Aldandani, Mohammed M. [1 ]
机构
[1] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka, Saudi Arabia
[2] Taibah Univ, Fac Sci, Al Madinah Al Munawarah 41411, Saudi Arabia
[3] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan
来源
OPEN PHYSICS | 2023年 / 21卷 / 01期
关键词
(2+1)-dimensional Konopelchenko-Dubrovsky system; analytical solutions; ZAKHAROV-KUZNETSOV EQUATION; TRAVELING-WAVE SOLUTIONS; STABILITY ANALYSIS; EXPANSION;
D O I
10.1515/phys-2023-0129
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Soliton solutions of the Konopelchenko-Dubrovsky (KD) equation using four analytical methods are established. The KD system is used to study the portrays in physics with weak dispersion. The investigated results are obtained in different forms such as trigonometric, hyperbolic, and exponential functions. For the physical behavior of the concerned nonlinear system, some solutions are plotted graphically via assigning the certain values to the parameters. Mathematica software 11.11 is used to handle all results as well as figures. Hence, searched results have rewarding recompenses in nonlinear science.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] New exact solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wang, Yang
    Wei, Long
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 216 - 224
  • [2] Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko-Dubrovsky (KD) system
    Kumar, Sachin
    Mann, Nikita
    Kharbanda, Harsha
    Inc, Mustafa
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)
  • [3] Numerical Soliton Solutions of Fractional Modified (2+1)-Dimensional Konopelchenko-Dubrovsky Equations in Plasma Physics
    Ray, S. Saha
    Sagar, B.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (01):
  • [4] Soliton solutions, Backlund transformation and Wronskian solutions for the extended (2+1)-dimensional Konopelchenko-Dubrovsky equations in fluid mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    Shen, Yu-Jia
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2489 - 2496
  • [5] On some novel exact solutions to the time fractional (2+1) dimensional Konopelchenko-Dubrovsky system arising in physical science
    Akhtar, Junaid
    Seadawy, Aly R.
    Tariq, Kalim U.
    Baleanu, Dumitru
    OPEN PHYSICS, 2020, 18 (01): : 806 - 819
  • [6] Propagation of nonlinear waves with a weak dispersion via coupled (2+1)-dimensional Konopelchenko-Dubrovsky dynamical equation
    Seadawy, Aly R.
    Yaro, David
    Lu, Dianchen
    PRAMANA-JOURNAL OF PHYSICS, 2019, 94 (01):
  • [7] Soliton Solutions, Backlund Transformation and Wronskian Solutions for the (2+1)-Dimensional Variable-Coefficient Konopelchenko-Dubrovsky Equations in Fluid Mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Wang, Lei
    Meng, De-Xin
    Gai, Xiao-Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (3-4): : 132 - 140
  • [8] Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko–Dubrovsky (KD) system
    Sachin Kumar
    Nikita Mann
    Harsha Kharbanda
    Mustafa Inc
    Analysis and Mathematical Physics, 2023, 13
  • [9] Painleve Analysis, Soliton Solutions and Backlund Transformation for Extended (2+1)-Dimensional Konopelchenko-Dubrovsky Equations in Fluid Mechanics via Symbolic Computation
    Xu Peng-Bo
    Gao Yi-Tian
    Yu Xin
    Wang Lei
    Lin Guo-Dong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) : 1017 - 1023
  • [10] Dynamical behavior of the fractional coupled Konopelchenko-Dubrovsky and (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznestsov equations
    Aslam, Arslan
    Majeed, Abdul
    Kamran, Mohsin
    Inc, Mustafa
    Alqahtani, Rubayyi T.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (06)