Heat release rate surrogate for ammonia-hydrogen premixed flames under various conditions

被引:10
|
作者
Xing, Jiangkuan [1 ]
Pillai, Abhishek Lakshman [1 ]
Kurose, Ryoichi [1 ]
机构
[1] Kyoto Univ, Dept Mech Engn & Sci, Kyoto daigaku Katsura,Nishikyo Ku, Kyoto 6158540, Japan
来源
APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE | 2023年 / 15卷
基金
日本学术振兴会;
关键词
Ammonia; Hydrogen; Heat release rate surrogates; Premixed flame; LAMINAR BURNING VELOCITY; EMISSION CHARACTERISTICS; PREFERENTIAL DIFFUSION; CHEMICAL MARKERS; COMBUSTION; OXIDATION; METHANE; DNS; AIR; MECHANISM;
D O I
10.1016/j.jaecs.2023.100193
中图分类号
O414.1 [热力学];
学科分类号
摘要
Blending hydrogen has proven an efficient method to enhance the combustion stability of gaseous ammonia flames. Heat release rate (HRR), as an important parameter to indicate combustion process, is hard to be directly measured and highly dependent on the fuel components, equivalence ratios, and operation conditions. This paper presents a comprehensive study on developing a general HRR surrogate (HRRS) for ammonia- hydrogen premixed flames under various conditions. Firstly, reaction mechanisms for ammonia/hydrogen premixed combustion are evaluated under various conditions, by comparing the predicted laminar flame speeds with the experimental data collected from published literature. The reaction mechanism developed by Shrestha et al., (2021) performs the best under various conditions. Then, series of one-dimensional freely propagating premixed flames under various conditions are calculated using this reaction mechanism and analyzed to explore the effects of blending ratios, pre-heat temperatures, equivalence ratios, and pressures on the HRR reconstruction for ammonia-hydrogen premixed flames from the viewpoint of chemical kinetics, and also serve as a database for the identification of HRRS. It is found that equivalence ratio and blending ratio have significant effects on the HRR reconstruction, while the effects of pressure and initial temperature are relatively limited. Subsequently, the general HRRS, [NH2]1.53[OH]0.28, is identified for ammonia-hydrogen premixed flames under various conditions using a grid-research optimization method. Finally, the general HRRS is further comprehensively validated on several 2D and 3D turbulent premixed flames of ammonia-hydrogen under various conditions. The comparisons with the two previous HRRSs also demonstrate that the present developed HRRS is superior and more stable temporally.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Investigation into Thermal-Fluid interaction of ammonia turbulent swirling flames under various Non-Premixed burner conditions
    Ilbas, Mustafa
    Kekul, Ozan
    Karyeyen, Serhat
    FUEL, 2022, 312
  • [42] Combustion characteristics of nonpremixed ammonia-hydrogen/air coaxial flames in a model combustor
    Kim, J. H.
    Kim, T. W.
    Lee, H. W.
    Kim, Y. H.
    Kwon, O. C.
    ENERGY, 2025, 319
  • [43] Assessment of Chemical Markers for Heat-Release Rate Correlations in Laminar Premixed Flames
    Gazi, Anna
    Vourliotakis, George
    Skevis, George
    Founti, Maria A.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2013, 185 (10) : 1482 - 1508
  • [44] Structure and nitric oxide formation in laminar diffusion flames of ammonia-hydrogen and air
    Thomas, Daniel E.
    Wadkar, Chaitanya
    Goertemiller, Clifford F. W.
    Northrop, William F.
    FUEL, 2024, 362
  • [46] The Ammonia-Hydrogen System under Pressure
    Chidester, Bethany A.
    Strobel, Timothy A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (38) : 10433 - 10437
  • [47] Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames
    Gotama, Gabriel J.
    Hayakawa, Akihiro
    Okafor, Ekenechukwu C.
    Kanoshima, Ryuhei
    Hayashi, Masao
    Kudo, Taku
    Kobayashi, Hideaki
    COMBUSTION AND FLAME, 2022, 236
  • [48] DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content
    Mukundakumar, Nithin
    Bastiaans, Rob
    ENERGIES, 2022, 15 (13)
  • [49] Combustion performances of premixed ammonia/hydrogen/air laminar and swirling flames for a wide range of equivalence ratios
    Mashruk, S.
    Zitouni, S. E.
    Brequigny, P.
    Mounaim-Rousselle, C.
    Valera-Medina, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (97) : 41170 - 41182
  • [50] A study on measuring ammonia-hydrogen IDTs and constructing an ammonia-hydrogen combustion mechanism at engine-relevant thermodynamic and fuel concentration conditions
    Zhang, Ridong
    Zhang, Qihang
    Qi, Yunliang
    Chu, Zhaohan
    Yang, Bin
    Wang, Zhi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 786 - 800