Anomalous Hall effect in disordered Weyl semimetals

被引:2
|
作者
Messica, Yonatan [1 ]
Gutman, Dmitri B. [1 ]
Ostrovsky, Pavel M. [2 ,3 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[3] LD Landau Inst Theoret Phys RAS, Chernogolovka 142432, Russia
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.108.045121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the anomalous Hall effect in a disordered Weyl semimetal. While the intrinsic contribution is expressed solely in terms of Berry curvature, the extrinsic contribution is given by a combination of the skewscattering and side-jump terms. For the model of small-size impurities, we are able to express the skew-scattering contribution in terms of scattering phase shifts. We identify the regime in which the skew-scattering contribution dominates the side-jump contribution: the impurities are either strong or resonant and at dilute concentration. In this regime, the Hall resistivity & rho;xy is expressed in terms of two scattering phases, analogous to the s-wave scattering phase in a nontopological metal. We compute the dependence of & rho;xy on the chemical potential and show that & rho;xy scales with temperature as T2 in low temperatures and as T3/2 in the high-temperature limit.
引用
收藏
页数:9
相关论文
共 37 条
  • [21] Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
    Guinea, F.
    Katsnelson, M. I.
    Geim, A. K.
    NATURE PHYSICS, 2010, 6 (01) : 30 - 33
  • [22] HALL EFFECT IN THE HEAVY FERMION SYSTEMS CeCu6 AND UBe13.
    Penney, T.
    Stankiewicz, J.
    von Molnar, S.
    Fisk, Z.
    Smith, J.L.
    Ott, H.R.
    1600, (54-57):
  • [23] QUANTUM HALL EFFECT IN MODULATION DOPED IN0.53GA0.47AS-INP HETEROJUNCTIONS.
    GULDNER, Y.
    HIRTZ, J.P.
    VIEREN, J.P.
    VOISIN, P.
    VOOS, M.
    RAZEGHI, M.
    1982, V 43 (N 16): : 613 - 616
  • [24] Review of non-conventional Hall effect thrusters
    Chhavi, Chhavi
    Walker, Mitchell L. R.
    Journal of Electric Propulsion, 2024, 3 (01):
  • [25] Berry curvature, spin Hall effect, and nonlinear optical response in moire transition metal dichalcogenide heterobilayers
    Hu, Jin-Xin
    Xie, Ying-Ming
    Law, K. T.
    PHYSICAL REVIEW B, 2023, 107 (07)
  • [26] Noise characterization of ultrasensitive anomalous Hall effect sensors based on Co40Fe40B20 thin films with compensated in-plane and perpendicular magnetic anisotropies
    Zhang, Yiou
    Wang, Kang
    Xiao, Gang
    APPLIED PHYSICS LETTERS, 2020, 116 (21)
  • [27] Orbital torque originating from orbital Hall effect in Zr
    Fukunaga, Riko
    Haku, Satoshi
    Hayashi, Hiroki
    Ando, Kazuya
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [28] Exact-exchange density functional theory of the integer quantum Hall effect: strict 2D limit
    Miravet, D.
    Proetto, C. R.
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (06):
  • [29] Spin and orbital Hall currents detected via current-induced magneto-optical Kerr effect in V and Pt
    Marui, Yukihiro
    Kawaguchi, Masashi
    Sumi, Satoshi
    Awano, Hiroyuki
    Nakamura, Kohji
    Hayashi, Masamitsu
    PHYSICAL REVIEW B, 2023, 108 (14)
  • [30] Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate ?-RuCl3
    Lefrancois, E.
    Grissonnanche, G.
    Baglo, J.
    Lampen-Kelley, P.
    Yan, J. -Q.
    Balz, C.
    Mandrus, D.
    Nagler, S. E.
    Kim, S.
    Kim, Young-June
    Doiron-Leyraud, N.
    Taillefer, Louis
    PHYSICAL REVIEW X, 2022, 12 (02):