On the Diophantine equation (pq)x

被引:0
|
作者
Orosram, Wachirarak [1 ]
Tangjai, Wipawee [2 ]
机构
[1] Buriram Rajabhat Univ, Fac Sci, Dept Math, Buriram 31000, Thailand
[2] Mahasarakham Univ, Fac Sci, Dept Math, Maha Sarakham 44150, Thailand
来源
INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE | 2023年 / 18卷 / 02期
关键词
Diophantine equation; non-negative integer solution; Catalan's conjectur;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Diophantine equation ( pq)(x)+( pq)(2s) n(y) = z(2), where p and q are prime numbers such that pq = 3 (mod 20) and n = 5 (mod 20). We show that a non-negative integer solution of such equation exists only if pq + 1 is a square. The solution is also in the form ( x, y, z) = (1 + 2s, 0, ( pq)(s) root pq + 1).
引用
收藏
页码:143 / 147
页数:5
相关论文
共 50 条
  • [21] The diophantine equation x2 + paqb = yq
    Godinho, Hemar
    Neumann, Victor G. L.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (09) : 2113 - 2130
  • [22] On the diophantine equation x2 + 2 = yn
    Sury B.
    Archiv der Mathematik, 2000, 74 (5) : 350 - 355
  • [23] Positive Integer Solutions of the Diophantine Equation 1/x
    Chinram, Ronnason
    Sirikantisophon, Kawinbhat
    Kaewchay, Saowapak
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1051 - 1059
  • [24] On the Diophantine Equation
    Zahari, N. M.
    Sapar, S. H.
    Atan, Mohd K. A.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 959 - 966
  • [25] On a diophantine equation
    Leont'ev, V. K.
    MATHEMATICAL NOTES, 2016, 100 (3-4) : 403 - 412
  • [26] On a diophantine equation
    V. K. Leont’ev
    Mathematical Notes, 2016, 100 : 403 - 412
  • [27] ON THE DIOPHANTINE EQUATION y(p) = f (x(1), x(2),.., x(r))
    Srikanth, Raghavendran
    Subburam, Sivanarayanapandian
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 58 (01) : 37 - 42
  • [28] The group of integer solutions of the Diophantine equation x2
    Ghasemi, Ghader
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (50): : 235 - 253
  • [29] A Note on the Diophantine Equation x! plus A = y(2), II
    Togbe, Alain
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2006, 6 (D06): : 25 - 32
  • [30] ON THE DIOPHANTINE EQUATION x2+2α13β = yn
    Luca, Florian
    Togbe, Alain
    COLLOQUIUM MATHEMATICUM, 2009, 116 (01) : 139 - 146