A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images

被引:10
|
作者
Nadkarni, Rohan [1 ]
Clark, Darin P. [1 ]
Allphin, Alex J. [1 ]
Badea, Cristian T. [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Radiol, Quantitat Imaging & Anal Lab, Durham, NC 27710 USA
关键词
denoising; deep learning; preclinical; micro-CT; photon-counting CT; contrast agents; CONVOLUTIONAL NEURAL-NETWORK; RECONSTRUCTION;
D O I
10.3390/tomography9040102
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Photon-counting CT (PCCT) is powerful for spectral imaging and material decomposition but produces noisy weighted filtered backprojection (wFBP) reconstructions. Although iterative reconstruction effectively denoises these images, it requires extensive computation time. To overcome this limitation, we propose a deep learning (DL) model, UnetU, which quickly estimates iterative reconstruction from wFBP. Utilizing a 2D U-net convolutional neural network (CNN) with a custom loss function and transformation of wFBP, UnetU promotes accurate material decomposition across various photon-counting detector (PCD) energy threshold settings. UnetU outperformed multi-energy non-local means (ME NLM) and a conventional denoising CNN called UnetwFBP in terms of root mean square error (RMSE) in test set reconstructions and their respective matrix inversion material decompositions. Qualitative results in reconstruction and material decomposition domains revealed that UnetU is the best approximation of iterative reconstruction. In reconstructions with varying undersampling factors from a high dose ex vivo scan, UnetU consistently gave higher structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) to the fully sampled iterative reconstruction than ME NLM and UnetwFBP. This research demonstrates UnetU's potential as a fast (i.e., 15 times faster than iterative reconstruction) and generalizable approach for PCCT denoising, holding promise for advancing preclinical PCCT research.
引用
收藏
页码:1286 / 1302
页数:17
相关论文
共 50 条
  • [21] Compressed photon-counting laser radar based on deep learning
    Yang C.
    Yan Q.
    Zhu Z.
    Wang Y.
    Wang M.
    Dai W.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49
  • [22] PPFM: Image Denoising in Photon-Counting CT Using Single-Step Posterior Sampling Poisson Flow Generative Models
    Hein, Dennis
    Holmin, Staffan
    Szczykutowicz, Timothy
    Maltz, Jonathan S.
    Danielsson, Mats
    Wang, Ge
    Persson, Mats
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (07) : 788 - 799
  • [23] Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography
    Brendel, Jan M.
    Walterspiel, Jonathan
    Hagen, Florian
    Kuebler, Jens
    Brendlin, Andreas S.
    Afat, Saif
    Paul, Jean-Francois
    Kuestner, Thomas
    Nikolaou, Konstantin
    Gawaz, Meinrad
    Greulich, Simon
    Krumm, Patrick
    Winkelmann, Moritz T.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2025, 106 (02) : 68 - 75
  • [24] Denoising pediatric cardiac photon-counting CT data using volumetric vision transformers and unpaired training data
    Clark, D. P.
    Schwartz, F. R.
    Cao, J. Y.
    Badea, C. T.
    MEDICAL IMAGING 2024: PHYSICS OF MEDICAL IMAGING, PT 1, 2024, 12925
  • [25] Cardiac Virtual Noncontrast Images for Calcium Quantification with Photon-counting Detector CT
    Mergen, Victor
    Ghouse, Sadaf
    Sartoretti, Thomas
    Manka, Robert
    Euler, Andre
    Kasel, Albert M.
    Alkadhi, Hatem
    Eberhard, Matthias
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2023, 5 (03):
  • [26] Automated segmentation of insect anatomy from micro-CT images using deep learning
    Toulkeridou, Evropi
    Gutierrez, Carlos Enrique
    Baum, Daniel
    Doya, Kenji
    Economo, Evan P.
    NATURAL SCIENCES, 2023, 3 (04):
  • [27] Molecular Imaging of Pulmonary Tuberculosis in an Ex-Vivo Mouse Model Using Spectral Photon-Counting Computed Tomography and Micro-CT
    Lowe, Chiara
    Ortega-Gil, Ana
    Moghiseh, Mahdieh
    Anderson, Nigel G.
    Munoz-Barrutia, Arrate
    Vaquero, Juan Jose
    Raja, Aamir Y.
    Matanaghi, Aysouda
    Chernoglazov, Alexander I.
    Dapamede, Theodorus
    Adebileje, Sikiru A.
    Alexander, Steven
    Amma, Maya R.
    Anjomrouz, Marzieh
    Asghariomabad, Fatemeh
    Atharifard, Ali
    Atlas, James
    Baer, Kenzie
    Bell, Stephen T.
    Bheesette, Srinidhi
    Butler, Philip H.
    Carbonez, Pierre
    Chambers, Claire
    Chapagain, Krishna M.
    Clark, Jennifer A.
    Colgan, Frances
    Crighton, Jonathan S.
    Dahal, Shishir
    Damet, Jerome
    De Ruiter, Niels J. A.
    Doesburg, Robert M. N.
    Duncan, Neryda
    Ghodsian, Nooshin
    Gieseg, Steven P.
    Goulter, Brian P.
    Gurney, Sam
    Healy, Joseph L.
    Kanithi, Praveen Kumar
    Kirkbride, Tracy
    Lansley, Stuart P.
    Mandalika, V. B. H.
    Marfo, Emmanuel
    Palmer, David
    Panta, Raj K.
    Prebble, Hannah M.
    Renaud, Peter
    Sayous, Yann
    Schleich, Nanette
    Searle, Emily
    Sheeja, Jereena S.
    IEEE ACCESS, 2021, 9 : 67201 - 67208
  • [28] A Review of deep learning methods for denoising of medical low-dose CT images
    Zhang, Ju
    Gong, Weiwei
    Ye, Lieli
    Wang, Fanghong
    Shangguan, Zhibo
    Cheng, Yun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [29] PoreSkel: Skeletonization of grayscale micro-CT images of porous media using deep learning techniques
    Mahdaviara, Mehdi
    Sharifi, Mohammad
    Raoof, Amir
    ADVANCES IN WATER RESOURCES, 2023, 180
  • [30] Micro-CT imaging of multiple K-edge elements using GaAs and CdTe photon counting detectors
    Allphin, A. J.
    Clark, D. P.
    Thuering, T.
    Bhandari, P.
    Ghaghada, K. B.
    Badea, C. T.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (08)