The Relationship between Ionic Conductivity and Solvation Structures of Localized High-Concentration Fluorinated Electrolytes for Lithium-Ion Batteries

被引:8
|
作者
Hossain, Md Jamil [1 ]
Wu, Qisheng [1 ]
Bernardez, Edelmy J. Marin J. [2 ,3 ]
Quilty, Calvin D. [2 ,3 ]
Marschilok, Amy C. [2 ,3 ,4 ,5 ]
Takeuchi, Esther S. [2 ,3 ,4 ,5 ]
Bock, David C. C. [3 ,4 ]
Takeuchi, Kenneth J. J. [2 ,3 ,4 ,5 ]
Qi, Yue [1 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Inst Energy Environm Sustainabil & Equ, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Interdisciplinary Sci Dept, Upton, NY 11973 USA
[5] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
ORTHOFORMATE-BASED ELECTROLYTES; LIQUID ELECTROLYTES; MOLECULAR-DYNAMICS; METAL BATTERIES; TEMPERATURE; LIPF6;
D O I
10.1021/acs.jpclett.3c01453
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Localized high-concentration electrolytes (LHCEs) combinea diluentwith a high-concentration electrolyte, offering promising properties.The ions, solvent, and diluent interact to form complex heterogeneousliquid structures, where high salt concentration clusters are embeddedin the diluent. Optimizing LHCEs for desired electrolyte propertieslike high ionic conductivity, low viscosity, and effective solid electrolyteinterphase (SEI) formation ability within the vast chemical and compositionaldesign space requires deeper understanding and theoretical guidance.We investigated the structures and conductivities of LHCEs based ona fluorinated solvent with two different diluents at varying concentrations.2,2,3,3-Tetrafluoro-propyl trifluoro-acetate (TFPTFA) entersthe solvation cluster due to its stronger Li-ion interactions, whereas1,1,2,2-tetrafluoro-ethyl 2,2,2-trifluoro-ethyl ether (TFETFE)enters only at extremely high diluent concentrations. The ionic conductivityincreases with decreasing diluent concentrations, with a slope changeduring cluster percolation. Overall, TFETFE demonstrates higher effectivenessthan TFPTFA, forming higher local salt concentration clusters andresulting in higher ionic conductivity.
引用
收藏
页码:7718 / 7731
页数:14
相关论文
共 50 条
  • [31] Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries
    Xia Lan
    Yu Linpo
    Hu Di
    George, Chen Z.
    ACTA CHIMICA SINICA, 2017, 75 (12) : 1183 - 1195
  • [32] Electrochemical behavior of sebaconitrile as a cosolvent in the formulation of electrolytes at high potentials for lithium-ion batteries
    Nanini-Maury, Elise
    Swiatowska, Jolanta
    Chagnes, Alexandre
    Zanna, Sandrine
    Pierre Tran-Van
    Marcus, Philippe
    Cassir, Michel
    ELECTROCHIMICA ACTA, 2014, 115 : 223 - 233
  • [33] Polymeric Ionic Liquid-poly(ethylene glycol) Composite Polymer Electrolytes for High-Temperature Lithium-Ion Batteries
    Li, Sijian
    Zhang, Zhengxi
    Yang, Kaihua
    Yang, Li
    CHEMELECTROCHEM, 2018, 5 (02): : 328 - 334
  • [34] In Situ Polymerized Electrolytes with Fully Cross-Linked Networks Boosting High Ionic Conductivity and Capacity Retention for Lithium Ion Batteries
    Tseng, Yu-Chao
    Hsiang, Shih-Hsien
    Lee, Ting-Yuan
    Teng, Hsisheng
    Jan, Jeng-Shiung
    Kyu, Thein
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 14309 - 14322
  • [35] Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling
    Liang, Chungwen
    Kwak, Kyungwon
    Cho, Minhaeng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (23): : 5779 - 5784
  • [36] Enabling LiTFSI-based Electrolytes for Safer Lithium-Ion Batteries by Using Linear Fluorinated Carbonates as (Co) Solvent
    Kalhoff, Julian
    Bresser, Dominic
    Bolloli, Marco
    Alloin, Fannie
    Sanchez, Jean-Yves
    Passerini, Stefano
    CHEMSUSCHEM, 2014, 7 (10) : 2939 - 2946
  • [37] In-situ generated solid-state electrolytes with intimate interface affinity enable conductivity and high performances for lithium-ion batteries
    Zhang, Wei
    Jin, Lei
    Bae, Wansu
    Park, Sungjun
    Jeon, Minhyuk
    Lee, Soonho
    Lee, Sungkwun
    Jang, Hohyoun
    Kim, Whangi
    ELECTROCHIMICA ACTA, 2023, 465
  • [38] Comparative Study of Lithium-Rich Cathode in Ester- and Ether-Based Localized High-Concentration Electrolytes
    Guo, Youzhang
    Li, Xinpeng
    Jie, Yulin
    Xi, Xiaoke
    Li, Wanxia
    He, Zixu
    Zhu, Xingbao
    Cao, Ruiguo
    Jiao, Shuhong
    ENERGY & FUELS, 2024, 38 (15) : 14712 - 14719
  • [39] Comparative Study of High Voltage Spinel∥Lithium Titanate Lithium-ion Batteries in Ethylene Carbonate Free Electrolytes
    Stokes-Rodriguez, Killian
    Jayasayee, Kaushik
    Hanetho, Sidsel M.
    Kvello, Jannicke
    Molesworth, Peter P.
    Dahl, Oystein
    Peter Wagner, Nils
    BATTERIES & SUPERCAPS, 2025, 8 (03)
  • [40] Ionic conductivity, viscosity, and self-diffusion coefficients of novel imidazole salts for lithium-ion battery electrolytes
    Szczesna-Chrzan, Anna
    Vogler, Monika
    Yan, Peng
    Zukowska, Grazyna Zofia
    Woelke, Christian
    Ostrowska, Agnieszka
    Szymanska, Sara
    Marcinek, Marek
    Winter, Martin
    Cekic-Laskovic, Isidora
    Wieczorek, Wladyslaw
    Stein, Helge S.
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (25) : 13483 - 13492